跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士翔
研究生(外文):Shih Hsiang Lin
論文名稱:DARM:圓環圖關聯規則探勘
論文名稱(外文):DARM: Doughnut-shaped Association Rule Mining
指導教授:王日昌王日昌引用關係
指導教授(外文):J. C. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:56
中文關鍵詞:資訊視覺化資料探勘關聯規則
外文關鍵詞:Information visualizationData miningAssociation rule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這是個資訊爆炸的時代,資訊越來越易取得,量也越來越多,為了方便呈現這些巨量的資訊,資訊視覺化這個領域的研究漸被重視,各種視覺化產品在我們日常生活中隨處可見,例如地圖、路標、各式圖表等。資訊視覺化也能夠應用於資料探勘的理論和方法,資料探就是從龐大的資料中發現知識。關聯規則在許多資料探勘的技術中是最常被拿出來廣泛探討的,目的是從所有的資料項目裡找出彼此之間的關聯,然而文字型的表達方式難以讓使用者於短時間內精確掌握重要之資料項目以及其代表之關聯性,故本研究提出一個使用圓環圖來表現關聯規則的方法。
DARM(Doughnut-shaped association rule mining)會產出一個概觀圓,以及數個可以依使用者的需求,分別由各個資料項目衍生出各自的圓形,可以用細部視野來做探勘。本演算法能讓使用者能更容易、更深入地瞭解演算法執行的過程,能讓使用者運用自身知識及經驗直接參與資料探勘的程序,最重要的是利用清晰易懂的圓環圖,能快速的讓使用者了解整個資料庫概觀及資料庫項目之間的關係。
This is the age of “Information Explosion”. We can easier to get more and more information. Information visualization research is to be valuable for conveniently presenting the infinite information. It is often seen the information visualization products like maps, signs, graphs in our life. Information visualization can also use in data mining methodology. Data mining is often called knowledge discovery. Association rule mining is the most famous data mining method. Association rule mining is used to discover all associations among items. However, user can not hold the important item fast and exactly by text. We propose an association rule algorithm which use doughnut shapes to present association rule.
DARM(Doughnut-shaped association rule mining) includes a overview circle and lots of detail circles which produced by items. DARM let user understand the mining step easily. User can use their self-knowledge and self-experience to participate in the process. Most importantly, we use the simple and clear doughnut shapes let user realize the database overview and all associations among items rapidly.
目錄
指導教授推薦書…………………………………………………………
口試委員會審定書………………………………………………………
長庚大學博碩士論文著作授權書……………………… iii
誌謝……………………………………………………………… iv
中文摘要…………………………………………………………… v
英文摘要…………………………………………………………… vi
目錄………………………………………………………………… vii
圖目錄……………………………………………………………… ix
第一章 緒 論 - 1 -
1.1 研究背景與動機 - 1 -
1.2 研究目的 - 3 -
1.3 研究方法 - 4 -
1.4 章節架構 - 4 -
第二章 文獻探討 - 6 -
2.1 資訊視覺化 - 6 -
2.2 視覺化資料探勘 - 8 -
2.3 關聯規則 - 9 -
2.3.1 感興趣的關聯規則 - 11 -
2.3.2 關聯規則應用在各領域 - 13 -
第三章 研究方法與實驗設計 - 15 -
3.1 研究方法 - 15 -
3.2 實驗設計與步驟 - 23 -
第四章 實驗結果與分析 - 24 -
4.1 開發環境 - 24 -
4.2 資料描述 - 24 -
4.3 文字結果 - 25 -
4.4 視覺化結果 - 30 -
4.5 整合文字及視覺化結果 - 35 -
第五章 結論 - 37 -
參考文獻 - 39 -

圖目錄
圖1.1 章節架構示意圖 - 5 -
圖3.1 步驟1~步驟4流程 - 20 -
圖3.2 步驟5流程 - 22 -
圖3.3 實驗設計示意圖 - 23 -
圖4.1 原始資料庫ODB - 25 -
圖4.2 1-itemsets頻繁項目集合L - 25 -
圖4.3 L探勘過程 - 26 -
圖4.4 資料表N產生過程 - 26 -
圖4.5 資料表K - 27 -
圖4.6 資料表T - 27 -
圖4.7 資料表K1 - 28 -
圖4.8 資料表K2 - 29 -
圖4.9 資料表K3 - 29 -
圖4.10 文字結果 - 29 -
圖4.11 詳細的頻繁項目 - 30 -
圖4.12 概觀結果 - 32 -
圖4.13 項目C (資料表K1)的視覺化結果 - 33 -
圖4.14 項目D (資料表K2)的視覺化結果 - 33 -
圖4.15 項目A (資料表K3)的視覺化結果 - 33 -
圖4.16 母圖→子圖之關係示意圖 - 34 -
圖4.17 整合文字及視覺化結果的系統介面-概觀圖 - 35 -
圖4.18 整合文字及視覺化結果的系統介面-項目C圖- 35 -
圖4.19 整合文字及視覺化結果的系統介面-項目D圖- 36 -
圖4.20 整合文字及視覺化結果的系統介面-項目A圖- 36 -
參考文獻

1. Agrawal, R., Imielinski, T. and Swami, A., "Mining Association Rules Between Sets of Items in Large Databases," Proceedings of 1993 ACM-SIGMOD, Washington, D.C., pp. 207-216, 1993.

2. Agrawal, R. and Srikant, R., "Fast Algorithms for Mining Association Rules," Proceedings of 1994 International Conference Very Large Data Bases, Santiago, Chile, pp. 487-499, 1994.

3. Ankerst, M., "Visual Data Mining," PhD thesis, Faculty of Mathematics and Computer Science, University of Munich, 2000.

4. Becker, B., Kohavi, R. and Sommerfield D., "Visualizing the Simple Bayesian Classifier," Proceedings of ACM SIGKDD Workshop Issues on the Integration of Data Mining and Data Visualization, 1997.

5. Becker, B., "Visualizing Decision Table Classifiers," Proceedings of IEEE Symposium on Information Visualization 1998, pp. 102-105., 1998.

6. Bonchi, F. and Lucchese, C., "On closed constrained frequent pattern mining," Proceedings of the 2004 international conference on data mining, pp. 35-42, 2004.
7. Brath, R., "Metrics for Effective Information Visualization," Proceedings of the 1997 IEEE Symposium on Information Visualization, pp. 108-111, l997.

8. Brin, S., Motwani, R. and Silverstein, C., "Beyond market basket: generalizing association rules to correlations," Proceedings of the 1997 ACM-SIGMOD international conference on management of data, pp. 265-276, 1997.

9. Brunk, C., Kelly, J. and Kohavi, R., "MineSet: an integrated system for data mining," Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 135-138., 1997.

10. Calders, T. and Goethals, B. "Mining all non-derivable frequent itemsets," Proceedings of the 2002 European conference on principles and pratice of knowledge discovery in databases, pp. 74-85, 2002.

11. Eirinaki, M. and Vazirgiannis, M. "Web mining for web personalization," ACM Transactions on Internet Technologies, Vol. 3, No. 1, pp. 1-27, 2003.

12. Han, J., Cheng, H., Xin, D. and Yan, X. "Frequent pattern mining: current status and future directions," In Proceedings of Data Mining and Knowledge Discovery, Vol. 15, pp.55-86, 2007.

13. Kamal, A., Saraiya, P., North, C., McCrickard, S., Shaffer, C. and Colaso, V., "Learning and Retention in Data Structures: A Comparison of Visualization, Text, and Combined Methods," Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 332-333, 2000.

14. Kehoe, C., Stasko, J., and Taylor, A., "Rethinking the Evaluation of Algorithm Animations as Learning Aids: An Observational Study," International Journal of Human-Computer Studies, Vol. 54, No. 2, pp. 265-284, 2001.

15. Keim, D. A. and Kriegel, H. P., "VisDB: Database Exploration using Multidimensional Visualization," IEEE Computer Graphics and Applications, Vol. 14, No. 5, pp. 40-49, 1994.

16. Kohavi, R. "Data Mining and Visualization," National Academy Press 2001, pp. 30-40, 2001.

17. Koperski, K. and Han, J., "Discovery of spatial association rules in geographic information databases," Proceedings of the 1995 international symposium on large spatial databases, pp. 47-66, 1995.




18. Lakshmanan, L. V. S ., Ng, R., Han, J. and Pang, A., "Optimization of constrained frequent set queries with 2-variable constraints," Proceedings of the 1999 ACM-SIGMOD international conference on management of data, pp. 157-168, 1999.

19. Li, X., Han, J. and Kim, S., "Motion-alert: automatic anomaly detection in massive moving objects," IEEE international conference on intelligence and security informatics, pp. 166-177, 2006.

20. Li, Z., Lu, S., Myagmar, S. and Zhou, Y., "CP-Miner: a tool for finding copy-paste and related bugs in operating system code," Proceedings of the 2004 symposium on operating systems design and implementation, pp. 289-302, 2004.

21. Liu, C., Yan, X., Yu, H., Han, J. and Yu, P.S., "Mining behavior graphs for "backtrace" of noncrashing bugs," Proceedings of the 2005 SIAM international conference on data mining, pp. 286-297, 2005.

22. Manku, G. and Motwani, R., "Approximate frequency counts over data streams," Proceedings of the 2002 international conference on very large data bases, pp. 346-357, 2002.

23. Mann, T.M., "Visualization of WWW-Search Results," Proceedings of the International Workshop on Web-Based Information Visualization, pp. 264-268, 1999.
24. Mann, T.M. and Reiterer, H., "Evaluation of different visualizations of Web search results," Proceedings of the 11th International Workshop on Database and Expert Systems Applications, pp. 586-590, 2000.

25. Metwally, A., Agrawal, D. and Abbadi A.E., "Efficient computation of frequent and top-k elements in data streams," Proceedings of the 2005 international conference on database theory, pp. 398-412, 2005.

26. Nanopoulos, A. and Manolopoulos, Y., "Mining patterns from graph traversals," Data and Knowledge Engineering, Vol. 37, No. 3, pp. 243-266, 2001.

27. Rössling, G. and Naps, T.L., "A Testbed for Pedagogical Requirements in Algorithm Visualizations," Proceedings of the 7th Annual ACM SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education, pp. 96-100, 2002.

28. Saraiya, P., "Effective features of algorithm visualizations," Master's thesis, Department of. Computer Science, Virginia Polytechnic Institute and State University, 2002.

29. Shen-Hsieh, A. and Schindler, M., "Data Visualization for Strategic Decision Making," American Institute of Graphic Arts Experience Case Study Archive, pp. 1-17, 2002.
30. Siebes, A., Vreeken, J. and Leeuwen, M., "Item sets that compress," Proceedings of the 2006 SIAM international conference on data mining, pp. 393-404, 2006.

31. Stolte, C., Tang, D. and Hanrahan, P., "Query, Analysis, and Visualization of Hierarchically Structured Data Using Polaris," Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 112-122, 2002.

32. Xin, D., Shen, X., Mei, Q. and Han, J. "Discovering interesting patterns through user's interactive feedback," Proceedings of the 2006 ACM SIGKDD international conference on knowledge discovery in databases, pp. 773-778, 2006.

33. Yan, X., Yu, P.S. and Han, J., "Graph indexing: a frequent structure-based approach," Proceedings of the 2004 ACM-SIGMOD international conference on management of data, pp. 335-346, 2004.

34. Yan, X., Yu, P.S. and Han, J., "Substructure similarity search in graph databases," Proceedings of the 2005 ACM-SIGMOD international conference on management of data, pp. 766-777, 2005.

35. 方群皓,「資訊視覺化-以引文網路為例」,國立臺北大學資訊管理研究所碩士論文,2007。
36. 許清楓,「應用視覺化軟體輔助高中生資料結構與演算法概念的學習」,臺灣師範大學資訊教育研究所碩士論文,2003。

37. 張云濤、龔玲,「資料探勘原理與技術」,五南出版社,2007。

38. 黃奕霖,「以視覺化資料探勘法深化ISP客戶關係管理」,國立高雄第一科技大學資訊管理系碩士論文,2004。

39. 楊錫瞽,「Web搜尋結果視覺化」,私立元智大學資訊工程研究所碩士論文,2001。

40. 陸津華,「挖掘高獲利性關聯規則之研究」,私立東海大學資訊工程與科學系碩士論文,2003。

41. 陳信伊,「星狀座標之軸排列於群聚視覺化之應用」,國立中央大學資訊工程研究所碩士論文,2005。

42. 韓寧,「資料探勘於線上咨詢系統之研究--提供感興趣之關聯規則與昂貴規則」,國立東華大學資訊工程研究所碩士論文,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊