[1] H. M. Kung, "Synthesis and characterization of gold and palladium catalysts supported on doped metal oxide modified multi-walled carbon nanotubes," Master Thesis. Taiwan, Taipei: Tatung University, Department of Materials Engineering, 2014.
[2] B. Feder, New York Times, 16 March 2003.
[3] S. Ha, B. Adams and R. I. Masel, "A miniature air breathing direct formic acid fuel cell," Journal of Power Sources 128, p. 119–124, 2004.
[4] H. Chang, J. R. Kim, J. H. Cho, H. K. Kim and H. K. Choi, "Materials and processes for small fuel cells," Solid State Ionics 148 (3-4), p. 601–606, 2002.
[5] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy and E. Peled, "Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications," Journal of Power Sources 117, p. 22–25, 2003.
[6] S. Ha, R. Larsen, Y. Zhu and R. I. Masel, "Direct formic acid fuel cells with 600 mA/cm2 at 0.4 V and 22 °C," Fuel Cells 4 (4), p. 337–343, 2004.
[7] Y. M. Zhu, Z. Khan and R. I. Masel, "The behavior of palladium catalysts in direct formic acid fuel cells," Journal of Power Sources 139, p. 15–20, 2005.
[8] X. Yu and P. G. Pickup, "Deactivation/reactivation of a Pd/C catalyst in a direct formic acid fuel cell (DFAFC): Use of array membrane electrode assemblies," Journal of Power Sources 187, p. 493–499, 2009.
[9] Y. Pan, R. Zhang and S. Blair, "Anode poisoning study in direct formic acid fuel cells," Electrochemical and Solid-State Letters 12 (3), p. 23–26, 2009.
[10] V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp and M.Zhiani, "Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)," Journal of Power Sources 190 (2), p. 241–251, 2009.
[11] T. C. Deivaraj and J. Y. Lee, "Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study," Journal of Power Sources 142 (1-2), p. 43–49, 2005.
[12] S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, p. 56–58, 07 November 1991.
[13] C. Lee, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321, p. 385–388, 2008.
[14] "Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene," University of Maryland, 24 March 2008. [Online]. Available: http://www.sciencedaily.com/releases/2008/03/080324094514.htm.
[15] R. S. Khurmi, Material Science, 5th ed., India: S. Chand & Company Ltd., 2013.
[16] Y. L. Lee, "The Synthesis and Characterization of Nano Noble Metals/ WO3/MWCNTs Hybrid Electrocatalysts," Master Thesis. Taiwan, Taipei: Tatung University, Department of Chemical Engineering, 2013.
[17] 周芳妃, "甲酸(Formic acid)," 27 Sep. 2010. [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=8833.
[18] Wikipedia, "Formic acid fuel cell (FAFC)," [Online]. Available: http://en.wikipedia.org/wiki/Formic_acid_fuel_cell.
[19] K. S. Lyons, M. Teliska, W. Baker and J. Pietron, "Low-Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes," 2005 DOE Hydrogen Program, p. 823–827, 2005.
[20] X.-Z. Yuan and H. Wang, "PEM Fuel Cell Fundamentals," in PEM Fuel Cell Electrocatalysts and Catalyst Layers, 2008, p. 39–41.
[21] X. Yu and P. G. Pickup, "Recent advances in direct formic acid fuel cells (DFAFC)," Journal of Power Sources 182, p. 124–132, 2008.
[22] W. L. Law, A. M. Platt, P. D. Wimalaratne and S. L. Blair, "Effect of Organic Impurities on the Performance of Direct Formic Acid Fuel Cells," Journal of The Electrochemical Society 156 (5), p. 553–557, 2009.
[23] X. Yu and P. G. Pickup, "Novel Pd–Pb/C bimetallic catalysts for direct formic acid fuel cells," Journal of Power Sources 192, p. 279–284, 2009.
[24] J. Zhang and C. Song, "Electrocatalytic Oxygen Reduction Reaction," in PEM Fuel Cell Electrocatalysts and Catalyst Layers, 2008, p. 89–134.
[25] S. Yang, X. Zhang, H. Mi and X. Ye, "Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid," Journal of Power Sources 175, no. 26–32, 2008.
[26] M. Mazurkiewicz, A. Małolepszy, A. Mikołajczuk, P. Kędzierzawski, L. Stobiński, K. J. Kurzydłowski and A. Borodziński, "Highly Dispersed Pd/MWCNTS Catalysts For Electrooxidation of Formic Acid in Direct fuel Cells," in Mikrosympozjum sprawozdawcze, 2012.
[27] Y. W. Rhee, S. Y. Ha and R. I. Masel, "Crossover of formic acid through Nafion® membranes," J. Power Sources 117, p. 35, 2003.
[28] C. Rice, S. Ha, R. Masel, P. Waszczuk, A. Wieckowski and T. Barnard, "Direct formic acid fuel cells," Journal of Power Sources 111, p. 83, 2002.
[29] W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, "Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells," The Journal of Physical Chemistry B 110, p. 15353–15358, 2006.
[30] C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau and J. M. Léger, "Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts," Electrochimica Acta 49, p. 3901–3908, 2004.
[31] R. Larsen, S. Ha, J. Zakzeski and R. I. Masel, "Unusually active palladium-based catalysts for the electrooxidation of formic acid," Journal of Power Sources 157, p. 78–84, 2006.
[32] J. H. Yu, H. G. Choi and S. M. Cho, "Performance of direct dimethyl ether fuel cells at low temperature," Electrochemistry Communications 7 (12), p. 1385–1388, 2005.
[33] S. Chen, C. Liu, M. Yang, D. Lu, L. Zhu and Z. Wang, "Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry," Journal of Hazardous Materials 170, p. 247–251, 2009.
[34] M. Tuzen, K. Saygi and M. Soylak, "Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes," Journal of Hazardous Materials 152 (2), p. 632–639, 2008.
[35] A. Stafiej and K. Pyrzynska, "Adsorption of heavy metal ions with carbon nanotubes," Separation and Purification Technology 58, p. 49–52, 2007.
[36] C. Herrero Latorre, J. Álvarez Méndez, J. Barciela García, S. García Martín and R. M. Peña Crecente, "Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: a review," Analytica Chimica Acta 749, p. 16–35, 2012.
[37] P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific American 283(6), p. 62–69, 2000.
[38] H. P. Boehm, R. Setton and E. Stumpp, "Nomenclature and terminology of graphite intercalation compounds," Pure and Applied Chemistry 66 (9), p. 1893–1901, 1994.
[39] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoffolien," Zeitschrift für anorganische und allgemeine Chemie (in German) 316 (3–4), p. 119–127, 1962.
[40] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage," Science 347 (6217), p. 1246501, 2015.
[41] D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, "Experimental Review of Graphene," ISRN Condensed Matter Physics 2012, p. 1–56, 2012.
[42] Y. Yamada, H. Yasuda, K. Murota, M. Nakamura, T. Sodesawa and S. Sato, "Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy," Journal of Material Science 48 (23), p. 8171–8198, 2013.
[43] Y. Yamada, J. Kim, K. Murota, S. Matsuo and S. Sato, "Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy," Carbon 70, p. 59–74, 2014.
[44] Graphene Oxide Paper, Northwestern University, 2011.
[45] A. Geim, "Graphene: Status and Prospects," Science 324 (5934), p. 1530–1534, 2009.
[46] A. K. Geim and A. H. MacDonald, "Graphene: Exploring carbon flatland," Physics Today 60 (8), p. 35–41, 2007.
[47] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. d. Heer, "Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics," The Journal of Physical Chemistry B 108 (52), p. 19912–19916, 2004.
[48] P. Sutter, "Epitaxial graphene: How silicon leaves the scene," Nature Materials 8 (3), p. 171–172, 2009.
[49] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Röckert, J. Xiao, C. Papp, O. Lytken, H. Steinrück, P. Müller and A. Hirsch, "Wet chemical synthesis of graphene," Adv Mater. 25(26), p. 3583–3587, 2013.
[50] K. Ji, G. Chang, M. Oyama, X. Shang, X. Liu and Y. He, "Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell," Electrochimica Acta 85, p. 84– 89, 2012.
[51] M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions," Journal of Physical Chemistry C 114 (14), p. 6426–6432, 2010.
[52] M. Choucair, P. Thordarson and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," Nature Nanotechnology 4 (1), p. 30–33, 2008.
[53] M. Choucair, P. Thordarson and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis," in GraphITA, Italy, 2011.
[54] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature 458 (7240), p. 872–876, 2009.
[55] J. Liying, L. Zhang, X. Wang, G. Diankov and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature 458 (7240), p. 877–880, 2009.
[56] Y. Hernandez, V. Nicolosi, M. Lotya and F. M. Blighe, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology 3, p. 563–568, 2008.
[57] J. Moore, C. Stanitski and P. Jurs, "9.4 Hybridization in Molecules with Multiple Bonds," in Principles of Chemistry: The Molecular Science, 1st ed., Cengage Learning, 2009, p. 324.
[58] L. Stobinski, A. Malolepszy, M. Mazurkiewicz, B. Lesiak, B. Mierzwa, G. Trykowski, D. Wasik, J. Zemek, P. Jiricek and H. M. Lin, "Graphene Oxide," Warsaw, 2014.
[59] W. S. Hummers Jr. and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society 80 (6), p. 1339, 1958.
[60] M. Biron, "Chapter 7 - Future prospects for thermoplastics and thermoplastic composites," in Thermoplastics and Thermoplastic Composites, Elsevier Ltd., 2007, p. 963.
[61] 元智大學, “甲酸燃料電池膜電極組之氣體擴散層製作方法”. 台灣 專利: I270997, 2005.
[62] Wikipedia, "Hydroxyl," [Online]. Available: http://en.wikipedia.org/wiki/Hydroxyl.
[63] J. d. L. Fuente, "Graphenea - Reduced Graphene Oxide," 2010. [Online]. Available: http://www.graphenea.com/pages/reduced-graphene-oxide#.VVmfqvmqpDj.
[64] H. He, J. Klinowski, M. Forster and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters 287, p. 53–56, 1998.
[65] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, "Improved Synthesis of Graphene Oxide," ACS Nano 4 (8), p. 4806–4814, 2010.
[66] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊(Physics Bomonthly) 33 (2), p. 163–167, 2011.[67] S. Pei and H. M. Cheng, "The reduction of graphene oxide," Carbon 50 (9), p. 3210–3228, 2012.
[68] S. Stankovich, D. A. Dikin, R. D. Piner and K. A. Kohlhaas, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon 45 (7), p. 1558–1565, 2007.
[69] D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology 3 (2), p. 101–105, 2008.
[70] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park and I. S. Jung, "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials 19 (12), p. 1987–1992, 2009.
[71] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller and R. D. Piner, "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy," Carbon 47 (1), p. 145–152, 2009.
[72] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," ACS Nano 2 (3), p. 463–470, 2008.
[73] X. Wang, L. Zhi and K. Mullen, "Transparent conductive graphene electrodes for dye-sensitized solar cells," Nano Letters 8 (1), p. 323–327, 2008.
[74] W. Gao, L. B. Alemany, L. Ci and P. M. Ajayan, "New insights into the structure and reduction of graphite oxide," Nature Chemistry 1(5), p. 403–408, 2009.
[75] S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids," Carbon 48 (15), p. 4466–4474, 2010.
[76] R. A. Serway, Principles of Physics, 2nd ed., London: Saunders College, 1998, p. 602.
[77] "2.7.9 Physical properties of sea water," in National Physical Laboratory, Kaye & Laby, 2011.
[78] R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis, "De-Gassed Water Is a Better Cleaning Agent," J. Phys. Chem. B 109 (3), p. 1235, 2005.
[79] K. J. Laidler, “A glossary of terms used in chemical kinetics, including reaction dynamics,” Pure and Applied Chemistry 68 (1), p. 155, 1996.
[80] Wikipedia, "Electrocatalyst," [Online]. Available: http://en.wikipedia.org/wiki/Electrocatalyst.
[81] Wikipedia, "Catalysis," [Online]. Available: http://en.wikipedia.org/wiki/Catalysis.
[82] H. Hu, Y. Fan and H. Liu, "Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts," International Journal of Hydrogen Energy 34 (20), p. 8535–8542, 2009.
[83] A. Couper, D. Pletcher and F. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews 90 (5), p. 837–865, 1990.
[84] Wikipedia, "Fuel cell," [Online]. Available: http://en.wikipedia.org/wiki/Fuel_cell.
[85] 陳陵援 和 林修正, "燃料電池中的觸媒," 科學發展 370, p. 24–27, 2003.
[86] S. Sun and Y. Yang, "Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrodes," Journal of Electroanalytical Chemistry 467, p. 121–131, 1999.
[87] K. Persson, A. Ersson, N. Iverlund and S. Jaras, "Influence of co-metals on bimetallic palladium catalysts for methane combustion," Journal of Catalysis 231, p. 139–150, 2005.
[88] H. Yin, Y. Wada, T. Kitamura, S. M. Shingo Kambe, H. Mori, T. Sakata 且 S. Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2,” Journal of Materials Chemistry 11, p. 1694–1703, 2001.
[89] Wikipedia, "Palladium," [Online]. Available: http://en.wikipedia.org/wiki/Palladium.
[90] 謝高陽, 余練民, 劉本耀 和 申泮文, "28.6 鈀、6.1 鈀的化學概要," 無機化學叢書 第九卷 錳分族 鐵系 鉑系, 科學出版社, 1996, p. 545.
[91] UNCTAD, "United Nations Conference on Trade and Development: Palladium," 2006. [Online]. Available: http://web.archive.org/web/20061206003556/http://www.unctad.org/infocomm/anglais/palladium/uses.htm.
[92] B. Mukherji, "Palladium Gains From Environmental Rules," The Wall Street Journal, 19 May 2015.
[93] Wikipedia, "Gold," [Online]. Available: http://en.wikipedia.org/wiki/Gold.
[94] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, "Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide," Journal of Catalysis 155 (2), p. 301–309, 1989.
[95] M. Haruta, T. Kobayashi, H. Sano and N. Yamada, "Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C," Chemistry Letters 16 (2), p. 405–408, 1987.
[96] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio and F. Uribe, "Platinum Monolayer Fuel Cell Electrocatalysts," Topics in Catalysis 46 (3-4), p. 249–262, 2007.
[97] F. D. Toste, "Gold catalysis for organic synthesis," Beilstein Journal of Organic Chemistry 7, p. 553–554, 2011.
[98] H. G. Raubenheimer and H. Schmidbaur, "The Late Start and Amazing Upswing in Gold Chemistry," Journal of Chemical Education 91 (12), p. 2024, 2014.
[99] C. H. Bartholomew and R. J. Farrauto, Fundamentals of industrial catalytic processes, 2nd ed., Hoboken, New Jersey: John Wiley & Sons, 2011.
[100] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, "Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability," Science 315 (5811), p. 493–497, 2007.
[101] J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, "Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters," Science 315 (5809), p. 220–222, 2007.
[102] A. G. Pavese, V. M. Solis and M. C. Giordano, "Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd(II) ions," Electrochimica Acta 32 (8), p. 1213–1216, 1987.
[103] A. Q. Wang, C. M. Chang and C. Y. Mou, "Evolution of Catalytic Activity of Au−Ag Bimetallic Nanoparticles on Mesoporous Support for CO Oxidation," The Journal of Physical Chemistry B 109 (40), p. 18860–18867, 2005.
[104] F. Maroun, F. Ozanam, M. O. M. and R. J. Behm, "The role of atomic ensembles in the reactivity of bimetallic electrocatalysts," Science 293, p. 1811–1814, 2001.
[105] J. Xu, "Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation," Journal of the American Chemical Society 132, p. 10398–10406, 2010.
[106] L. Prati and M. Rossi, "Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols," Journal of Catalysis 176 (2), p. 552–560, 1998.
[107] M. Chen, D. Kumar, C. W. Yi and D. W. Goodman, "The promotional effect of gold in catalysis by palladium-gold," Science 310, p. 291–293, 2005.
[108] H. Okamoto and T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., Ohio, USA: ASM International, 1990.
[109] T. Wei, J. Wang and D. W. Goodman, "Characterization and chemical properties of Pd-Au alloy surfaces," The Journal of Physical Chemistry C 111, p. 8781–8788, 2007.
[110] A. Low and V. Bansal, "A visual tutorial on the synthesis of gold nanoparticles," Imaging and Intervention Journal 6 (1), p. e9, 2010.
[111] L. F. Hohnstedt, B. O. Miniatas and S. M. C. Waller, "Aqueous Sodium Borohydride Chemistry. The Colnage Metals, Copper, Silver, and Gold.," Anal. Chem. 37 (9), p. 1163–1164, 1965.
[112] S. G.-d. Pedro, M. Puyol, D. Izquierdo, I. Salinas and J. Alonso, "Synthesis of MUA-protected gold nanoparticles in microfluidic devices with in situ UV-vis characterization," Ibersensor, Lisbon, Portugal, 2010.
[113] H. Cheng and K. Scott, "Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide?," Applied Catalysis B: Environmental 108-109, p. 140–151, 2011.
[114] S. Yakabe, "One-Pot System for Reduction of Epoxides Using NaBH4, PdCl2 Catalyst, and Moist Alumina," Synthetic Communications 40 (9), p. 1339–1344, 2010.
[115] D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Berkeley: Cambridge University, 1999.
[116] C. H. Wang, T. E. Hua and C. C. Chien, "Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction," Materials Chemistry and Physics 106, p. 323–329, 2007.
[117] C. H. Wang, C. J. N. Liu, C. L. Wang, T. E. Hua, J. M. Obliosca, K. H. Lee, Y. Hwu, C. S. Yang, R. S. Liu, H. M. Lin, J. H. Je and G. Margaritondo, "Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intense x-ray irradiation," Journal of Physics D: Applied Physics 41, p. 195301, 2008.
[118] C. Wang, Y. Fang, Y. Xia, J. Xu, G. Ren and J. Fen, "Synthesis of Gold Nanoparticles Using Polyethyleneglycol-Sodium Dodecyl Sulfate," in American Institute of Chemical Engineers: Annual Meeting, Cincinnati, Ohio, 2005.
[119] B. G. Ershov and A. V. Gordeev, "A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2," Radiation Physics and Chemistry 77 (8), p. 928–935, 2008.
[120] M. Kumar, L. Varshney and S. Francis, "Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix," Radiation and Chemistry 73, p. 21–27, 2005.
[121] Y. C. Yang, C. H. Wang, Y. K. Hwub and J. H. Je, "Synchrotron X-ray synthesis of colloidal gold particles for drug delivery," Materials Chemistry and Physics 100, p. 72–76, 2006.
[122] D. R. Crow, Principles and Applications of Electrochemistry, 4th ed., Boca Raton, Florida: Chapman & Hall, 1994.
[123] C. T. Lu, "The Synthesis and Characterization of Nano-hybrid Noble Metals/N doped TiO2/MWCNTs Electrocatalysts," Master Thesis. Taiwan, Taipei: Tatung University, Department of Materials Engineering, 2014.
[124] J. Hodkiewicz, "Characterizing carbon nanomaterials: Raman spectroscopy can detect small changes in the structural morphology of carbon nanomaterials, making it an ideal solution for material sciences," Laboratory Equipment, 2011.