參考文獻
[1]    全民糖尿病觀測站 http://www.diabetes.org.tw/wddt_heduc01.jsp?P_TNO=EDUC990010001&P_HCTG=A
[2]    糖尿病的症狀與預防
https://www.health2sync.com/blog/post/20180326/to-know-diabetes/
[3]    《科學發展》2007年12月,420期,42 ~ 45頁https://scitechvista.nat.gov.tw/c/s97E.htm
[4]    台北市政府衛生局 http://health.gov.taipei/Default.aspx?tabid=291&mid=947&itemid=23354
[5]    台灣word http://www.twword.com/wiki/%E7%94%9F%E7%89%A9%E6%84%9F%E6%B8%AC%E5%99%A8
[6]    環球智控網-解說生物傳感器基本知識 http://www.hqzk99.com/news/1418/4273.html
[7]    高士軒.翁文慧,臨床醫療生物感測器發展及技術應用
[8]    Tarushee Ahujaa, Irfan Ahmad Mira, Devendra Kumara, Rajeshb, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials ,28 (2007) 791–805
[9]    Kathryn E. Toghill and Richard G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci., 5 (2010) 1246 – 1301
[10]    張紘銓、張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
[11]    呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003[12]    蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007[13]    Xu, W., Dai, S., Wang, X., He, X., Wang, M., Xi, Y., & Hu, C. (2015). Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. Journal of Materials Chemistry B, 3(28), 5777-5785
[14]    Yang, Y., Wang, Y., Bao, X., & Li, H. (2016). Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 775, 163-170
[15]    Streinz, C. C., Motupally, S., & Weidner, J. W. (1995). The effect of temperature and ethanol on the deposition of nickel hydroxide films. Journal of the Electrochemical Society, 142(12), 4051-4056
[16]    Girish S. Gund, Deepak P. Dubal, Supriya B. Jambure, Sujata S. Shinde, and Chandrakant D. Lokhande,Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties,J. Mater. Chem. A, 2013, 1, 4793–4803
[17]    Xin Zheng, Xiaoqin Yan, Yihui Sun, Yong Li, Minghua Li, Guangjie Zhang and Yue Zhang,Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface,J. Mater. Chem. A, 2016, 4, 17981–17987
[18]    Byung Hyun Min, Dae Woo Kim, Kyoung Hwan Kim, Hyung Ouk Choi, Sung Woo Jang, Hee-Tae Jung,Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode,CARBON 80 (2014) 446–452
[19]    A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala,Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications,J Mater Sci (2013) 48:6707–6712
[20]    奈米鑽石-維基百科 https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
[21]    奈米鑽石的生醫應用-涂誌賢 psroc.org.tw/bimonth/download.php?d=1&cpid=178&did=3
[22]    He, J., Yin, Y. G., Wu, T., Li, D., & Huang, X. C. (2006). Design and solvothermal synthesis of luminescent copper (I)-pyrazolate coordination oligomer and polymer frameworks. Chemical Communications, (27), 2845-2847
[23]    Partoens, B., & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B, 74(7), 075404
[24]    Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., ... & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. nature, 438(7065), 197
[25]    Khaled Parvez, Sheng Yang, Xinliang Feng, Klaus Müllen,Exfoliation of graphene via wet chemical routes,Synthetic Metals 210 (2015) 123–132
[26]    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. ... & Conrad, E. H. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196
[27]    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D. ... & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363
[28]    王茂章,形形色色長出碳和碳的同素異形體,http://wap.sciencenet.cn/blogview.aspx?id=448817
[29]    電化學分析法-台灣Word http://www.twword.com/wiki/%E9%9B%BB%E5%8C%96%E5%AD%B8%E5%88%86%E6%9E%90%E6%B3%95
[30]    劉茂煌,循環伏安法,http://www.teachers.fju.edu.tw/files/981/981015-1.pdf
[31]    循環伏安法,http://m.instrument.com.cn/bbs/d-4866861-1.html
[32]    Su-Il Pyun, Jong-Won Lee,Progress in Corrosion Science and Engineering I,2009
[33]    Falahati, H. (2015). The development and characterization of a nickel/metal hydride microbattery for microfluidic applications(Doctoral dissertation)
[34]    Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc. R. Soc. A, 471(2174), 20140792
[35]    McEwen, R. S. (1971). Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 75(12), 1782-1789
[36]    K. I. Pandya, W. E. O'Grady, D. A. Corrigan, J. McBreen, and R. W. Hoffman,Extended X-ray Absorption Fine Structure Investigations of Nickel Hydroxkies,1990
[37]    國立台灣科技大學,貴重儀器中心
[38]    Richard L. McCreery,Raman Spectroscopy for C hemic a1 Analysis,2000
[39]    國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
[40]    林麗娟,X光繞射原理及其應用,1994
[41]    國立台灣科技大學X光繞射實驗室
[42]    利用環電位儀偵測氧化還原電位及電流,http://140.136.176.3/joom/data/menu/files/exp/CV
[43]    石墨烯對於三維網狀氫氧化鎳在非酵素型葡萄糖感測器之研究2017吳哲維
[44]    Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., & MacDougall, B. R. (2012). Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. The Journal of Physical Chemistry A, 116(25), 6771-6784
[45]    Dr. Jonathan, C.Y. Chung,Fuel cell technology and rechargeable batteries,http://slideplayer.com/slide/4522366/
[46]    Dai-Bin Kuang, Bing-Xin Lei, Yu-Ping Pan, Xiao-Yun Yu, and Cheng-Yong Su,Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process,J. Phys. Chem. C 2009, 113, 5508–5513
[47]    Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang, and Hongjie Da,Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials,J. AM. CHEM. SOC. 2010, 132, 7472–7477
[48]    Patil, R. A., Chang, C. P., Devan, R. S., Liou, Y., & Ma, Y. R. (2016). Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of nickel oxide. ACS applied materials & interfaces, 8(15), 9872-9880
[49]    Lu, Q. H., Huang, R., Wang, L. S., Wu, Z. G., Li, C., Luo, Q., ... & Yan, P. X. (2015). Thermal annealing and magnetic anisotropy of NiFe thin films on n+-Si for spintronic device applications. Journal of Magnetism and Magnetic Materials, 394, 253-259
[50]    Parveen, N., & Cho, M. H. (2016). Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Scientific reports, 6, 27318
[51]    Chunyan Guo, Yinmei Wang, Yongqing Zhao, and Cailing Xu,Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity,Anal. Methods, 2013, 5, 1644–1647
[52]    石墨烯對於三維網狀氫氧化鎳在非酵素型葡萄糖感測器之研究. 2017. PhD 吳哲維
[53]    Soochan Kim, Sang Ha Lee, Misuk Cho, Youngkwan Lee,Solvent-assisted morphology confinement of a nickel sulfide nanostructure and it sapplication for non-enzymatic glucose sensor,Biosensors andBioelectronics85(2016)587–595
[54]    Zhong, A., Luo, X., Chen, L., Wei, S., Liang, Y., & Li, X. (2015). Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchimica Acta, 182(5-6), 1197-1204.
[55]    Shackery, I., Patil, U., Pezeshki, A., Shinde, N. M., Kang, S., Im, S., & Jun, S. C. (2016). Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochimica Acta, 191, 954-961
[56]    Liu, S., Hui, K. S., & Hui, K. N. (2016). Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS applied materials & interfaces, 8(5), 3258-3267
[57]    Espro, C., Leonardi, S. G., Bonavita, A., Galvagno, S., & Neri, G. (2016, February). CuO-Modified Cu Electrodes for Glucose Sensing. In Convegno Nazionale Sensori (pp. 90-96). Springer, Cham
[58]    Manikandan, A., Veeramani, V., Chen, S. M., Madhu, R., Lee, L., Medina, H. ... & Chueh, Y. L. (2016). Low-temperature chemical synthesis of three-dimensional hierarchical Ni (OH) 2-coated Ni microflowers for high-performance enzyme-free glucose sensor. The Journal of Physical Chemistry C, 120(45), 25752-25759
[59]Xie, L., Asiri, A. M., & Sun, X. (2017). Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 244, 11-16.
[60] 微波電漿化學氣相沉積法於矽基材上成長鑽石薄膜
http://aca.cust.edu.tw/pub/journal/38/38-01.pdf
[61]高瞻自然科學教學平台,x射線光電子能譜儀
http://highscope.ch.ntu.edu.tw/wordpress/?p=72999