跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊登凱
研究生(外文):Deng Kai Yang
論文名稱:高嶺土添加劑對精密鑄造泥漿及陶殼模性能的影響
論文名稱(外文):Effects of Kaolin Additive on the Properties of Slurry and Ceramic Shell Mold for Investment Casting
指導教授:楊國和楊國和引用關係
指導教授(外文):Koho Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:精密鑄造高嶺土添加劑泥漿性能破斷強度添加劑關鍵字高嶺土製程
外文關鍵詞:Investment CastingKaolin additiveSlurry propertiesCeramic shell mold properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:923
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本文主要在精密鑄造陶殼模製程中的背漿,添加高嶺土添加劑,探討高嶺土添加劑對泥漿對及所製作之陶殼模性能的影響。
主要探討泥漿黏度值丶pH值丶泥漿流變性等,對於陶殼模性能的影響,主要探討陶殼模濕態丶高溫丶殘留破斷強度及高溫透氣度。
實驗結果顯示:泥漿性能方面,高嶺土添加劑添加量在3wt%及5wt%時,泥漿pH下降程度有減緩趨勢,而當添加量到達10wt%時,pH值則下降的趨勢更為明顯。
在陶殼模性能方面,當高嶺土添加於背漿時,陶殼模高溫及殘留破斷強度隨著添加量增加而增加,而濕態破斷強度因高嶺土保水性而造成陶殼模乾燥不足,在陶殼模內部產生應力,使濕態破斷強度下降。高溫透氣度方面,當添加於背漿時,其透氣度隨著添加量的增加而下降,在乾燥時間方面,均隨著添加量增加而增加。在不同燒結持溫時間對添加高嶺土陶殼模高溫及殘留破斷強度方面,持溫1h和3h對陶殼模高溫及殘留破斷強度均無明顯的影響。

關鍵字: 精密鑄造,高嶺土添加劑,泥漿性能,陶殼模性能
The effect of kaolin additive on the properties of backup slurry and ceramic shell mold has been studied.
The main concern of the kaolin additive in the backup slurry was its effect on the viscosity, pH and rheology; and for ceramic shell mold, was its effect on green strength, hot strength, fired strength and high temperature permeability.
The results showed: for the properties of backup slurry, the decline of pH was relaxed when the amount of kaolin additives were 3 wt% and 5 wt%; when the adding amount was up to 10 wt%, the decrease of pH was more obviously.
For the properties of ceramic shell mold, the hot strength and fired strength were increased with the increase of the adding amount of kaolin. The green strength of the ceramic shell mold was lowered owing to the water retention property of the kaolin additive which resulted in the deficiency of drying and caused the internal stress of the ceramic shell mold. The high temperature permeability was reduced with the increase of the amount of kaolin additive. And the drying time was also increased with the increase of the additive. There was no visible difference between 1h and 3h sintering duration for the effect of kaolin additive on the hot strength and fired strength of the ceramic shell mold.

Keywords: Investment casting, Kaolin additive, Slurry properties, Ceramic shell mold properties.
摘要 I
ABSTRACT II
致謝 II
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1研究背景 1
1-2精密鑄造特色及種類 2
1-2-1 精密鑄造特色 2
1-2-2精密鑄造種類 2
1-3 精密鑄造泥漿添加劑 7
1-4 精密鑄造陶殼模黏結劑 9
1-5 研究動機與目的 11
第二章 理論基礎與前人研究 12
2-1 前言 12
2-2 高嶺土工業應用研究 13
2-3 高嶺土性能 14
2-3-1 Kaolin之基本結構 14
2-3-2 Kaolin相變態行為 15
2-3-3模來石 17
2-3-3-1 模來石的組成與構造 17
2-3-3-2 模來石的形狀 19
2-3-3-3 模來石的性質與應用 19
第三章 實驗步驟與儀器 20
3-1 實驗設計 20
3-1 實驗步驟說明 23
3-1-1添加劑材料性能分析 23
3-1-1-1 高嶺土粉末的相分析 23
3-1-1-2 高嶺土粉末的熱性能分析 23
3-1-1-3 高嶺土粉末試片的顯微觀察 23
3-1-2泥漿製備 24
3-1-3 製作陶殼模試片 24
3-1-3-1 陶殼模乾燥時間量測 26
3-1-3-2 陶殼模性能量測 26
3-2實驗材料 29
3-2-1 高嶺土 29
3-2-1-1 高嶺土粉末粒徑 29
3-2-1-2 高嶺土粉末成份 30
3-2-2鋯粉 31
3-2-3矽膠液 32
3-2-4馬來粉 32
3-3 實驗儀器 34
3-3-1 材料分析儀器 34
3-3-2 pH量測儀 34
3-3-3 流變儀 35
3-3-4 滾筒及球磨機 35
3-3-5自轉桶攪拌器 36
3-3-6 破斷強度試驗機 38
3-3-7 高溫透氣試驗機 38
第四章 結果與討論 40
4-1 材料分析 40
4-1-1高嶺土粉末分析 40
4-1-2高嶺土粉末的熱性質分析 41
4-1-3高嶺土粉末的相變態分析 44
4-1-4高嶺土粉末液相生成溫度 44
4-1-5高嶺土粉末微結構分析 45
4-2 高嶺土添加劑對泥漿性能影響 51
4-2-1高嶺土添加劑對泥漿黏度及流變性影響 51
4-2-2高嶺土添加劑對泥漿pH值的影響 56
4-2-3高嶺土添加劑對泥漿保水特性影響 59
4-3 高嶺土添加劑對陶殼模性能的影響 61
4-3-1 高嶺土添加劑對陶殼模破斷強度的影響 61
4-3-2 高嶺土添加劑對陶殼模透氣度的影響 66
4-3-3 高嶺土添加劑對陶殼模乾燥程度的影響 67
4-4高嶺土添加劑對鑄件殘留強度的影響 70
第五章 結論 72
參考文獻 74
1.陳武宏,“鑄造應用實務”,全華科技圖書股份有限公司,1990,p.1。
2.林宗獻,“精密鑄造”,全華科技圖書股份有限公司,1986,pp.7-155。
3.中華民國鑄造學會,“鑄造手冊第四冊(特殊鑄造法) ”,中華民國鑄造學會,1999,pp.23-25。
4.吳哲豪,“絹雲母添加劑對泥漿及陶殼模性能的影響”,國立高雄應用科技大學模具工程系研究所碩士論文,2008,p.5。
5.S. Jones, M.R. Jolly, and K. Lewis,“Development of Techniques for Predicting Ceramic Shell Properties for Investment Casting”, British Ceramic Transactions 2002, Vol. 101, No. 3, pp.106-113.
6.黃新春,“鑄造學”,文京圖書有限公司,1990,p.259。
7.傅豪,陳武宏,“精密鑄造技術”, 文京圖書有限公司,1990,pp.58-63。
8.姜不居,“熔模精密鑄造”,機械工業出版社,1986,pp.105-116。
9.林祐任,高家豪,楊國和,“奈米碳酸鈣添加劑對背漿及陶殼模性能的影響”,台灣鑄造學會九十六年度論文發表會,2007, pp.147-154。
10.S. Jones, C. Yuan, “Advances in shell moulding for investment casting”, Journal of Materials Processing Technology , 135, 2003, pp.285-265.
11.C. Yuan, S. Jones, “Investigation of fibre ceramic moulds for investment casting”, Journal of European Ceramic Society, 23, 2003, pp.399-407.
12.C. Yuan, S. Jones, S. Blackburn,“The influence of autoclave steam on polymer and organic fibre modified ceramic shell”, Journal of European Ceramic Society, 25, 2005, pp.1081-1087.
13.蘇國明,“陶模強度添加劑的研究”,鑄工,1993,Vol.19,pp.21-25。
14.傅豪,陳武宏,“精密鑄造技術”,文京圖書有限公司,1990,p.188。
15.“精密鑄造法”,日本鑄物協會精密鑄造研究部會編,日刊工業新聞社,1981,p.28。
16.傅豪,陳武宏,“精密鑄造技術”,文京圖書有限公司,1990,pp.185-186。
17.郭鴻緯,“N-月桂基醯胺基乙磺酸鈉與乙烯四氫吡咯酮對高嶺土懸浮液吸附性和流變性之影響”,靜宜大學應用化學研究所碩士論文,1990,pp.30-34。
18.梁繼文,“國立編譯館主編”,礦物學(下),1984,p.1177。
19.L. G. Berry, and Brian Mason,“Mineralogy”,1967, pp.534-535.
20.朱粉利,周漢文,“高嶺土在材料學方面的應用”,礦產保護與利用,2004,No.1,pp.22-26。
21.劉菁,”茂名高嶺土的造紙塗佈性能研究”,礦產綜合利用,2001,No.4,pp.31-34。
22.時艷,邵建波,“高嶺土的深加工及開發應用現狀簡介”,吉林地質,200,Vol.19,No.4,pp.40-46。
23.Gabriel Vaega,“The structure of kaolinite and metakaolinite”,Constantine the Philosopher University, Epitoanyag 59. evf. 2007. pp.6-9.
24.R. E. Grim,“Clay Mineralogy”, McGraw-Hill Inc, New York, 2nded, 1968, p.55.
25.張沛翎,“高嶺土添加γ-Al2O3合成富鋁紅柱石之研究”,成功大學資源工程研究所碩士論文,1999,p11。
26.F. H. Norton,“Fine Ceramics,Technology and Applications”, Robert E. Krieger, USA, 1978, p.142.
27.W. M. Carty, and U. Semapati,“Porcelain-Raw Materials Processing Phase Evolution and Mechanical Behavior”, J. Am. Ceram. Soc, 1998, Vol. 81, No. 1, pp.3-20.
28.段維新,“高嶺土合成模來石的研究”,化工技術,2001,Vol.9,No.9,pp.154-158。
29.G. W. Brindley and M. Nakahira,“The Kaolinite-mullite reaction series: I.A Survey of Outstanding Problems”J. Am. Ceram. Soc.,Vol. 42, No.7, pp.311-314.
30.G. W. Brindley and M. Nakahira,“The Kaolinite-mullite reaction series: II. Metakaolin”, J. Am. Ceram. Soc., Vol.42, No.7, pp.314-318.
31.G. W. Brindley and M. Nakahira,“The Kaolinite-mullite reaction series: III. The high-temperature Phases”, J. Am. Ceram. Soc., Vol.42, No. 7, pp.319-324.
32.C. J. McConville, W. W. Lee, and J. H. Sharp,“Microstructural Evolution in Fired Kaolinite”,British Ceramic Transactions, 1998, Vol.97. No.4, pp.162-168.
33.S. H. Risbud, and J. Pask,“Calculated Thermodynamic Data and Metastable Immibility in the System SiO2-Al2O3”, J. Am. Ceram. Soc., 1977, Vol.60, No.9, pp.418-424.
34.R. Morrell,“Handbook of Properties of Technical & Engineering Ceramics Part I, An introduction for the Engineer and Designer”, 1985, HMSO, London, pp.71.
35.K. Okada, N. Otsuka, S. Somiya,“Review of Mullite Synthesis Routes in Japan”, Am. Ceram. Soc. Bull, 1991, Vol.70, No.10, pp.1633-1639.
36.S. Somiya, Y. Hirata,“Mullite Powder Technology and Application in Japan”, Am. Ceram. Soc.Bull, 1991, Vol.70, No.10, pp.1624-1627.
37.T. Kumazawa, S. Kanzaki, S. Ohta, and H. Tabata,“Influence of Chemical Composition on the Mechanical Properties of SiO2-Al2O3 Ceramic”, J. Ceram. Soc. , Jpn. Inter. Ed., 1988, 96, pp.85-91.
38.P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni,“High-Temperature Mechanical Propertirs of Mullite under Compression”, 1977, J. Am. Ceram. Soc.,Vol. 60 No.3, pp.150-155.
39.T. Mah and K. S. Mazdiyasni,“Mechanical Properties of Mullite”, 1983, Vol.66, No.10, pp.699-703.
40.J. E. Fenstermacher and F. A. Hummel,“High-Temperature Mechanical Properties of Ceramic Materials: IV, Sintered Mullite Bodies”, J. Am. Ceram. Soc., 1961, Vol.44, No.6, pp.284-289.
41.K. Okada, N. Otsuka and S. Somiya,“Review of Mullite Synthesis Routes in Japan”, Am. Ceram. Soc. Bull., 1911, Vol.70, No.10, pp. 1633-1639.
42.M. D. Sacks, H. W. Lee and J. A. Pask,“A Review of Powder Preparation Methods and Densification Procedures For Fabrication High Density Mullite”,167-207, in Mullite and Mullite Matrix Composites, The American Ceramic Society, 1990.
43.Y.Y.Hsieh and W.H.Tuan,“A study on the Reaction Sintering of Kaolin-Zircon-Alumina Systems”, Journal of Material Science and Engineering, 2001, Vol.33, No.3, pp.171-177.
44.許自雄,顏富士,“以溶膠-凝膠法合成高純度富鋁紅柱石”, 陶業季刊,1986,Vol.5, No.3, pp.4-12。
45.藍國璿,“以高嶺土及高嶺土/氧化鋁合成模來石之研究”,國立台灣大學材料科學與工程學研究所碩士論文,1997,pp.7-20。
46.Ceramic Test Procedures, Investment Casting Institute , 1980, 775-83, p.5.
47.培林企業有限公司提供。
48.忠正股份有限公司提供。
49.Mark Bijvoet, “Practical ceramic shell slurry preparation and control”, 25th BICTA Conference on Investment Casting, 2001, paper16.
50.Yung-Feng Chen, Moo-Chin Wang, Min-Hsiung Hon,“Phase Transformation and Growth of Mullite in Kaolin Ceramic”, Joural of the European Ceramic Society, 2004, Vol.24, pp.2389-2397.
51.W. M. Carty, U. Senapati,“Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior”, J. Am. Ceram. Soc. ,1998, Vol.81, No.1, pp.3-20.
52.G. W. Brindley, M. Nakahira,“Kinetics of Dehydroxylation of Kaolinite and Halloysite” ,J. Am. Ceram. Soc. , 1957, Vol.40, No.10, pp.346-350.
53.A. K. Chakraborty and D. K. Ghosh, “Reexamination of the kaolinite-to-mullite reaction series”, J. Am. Ceram. Soc.,1978, Vol.61, No.3, pp.170-173.
54.B. Sonuparlak, M. Sarikaya, and I. A. Aksay, “Spinel Phase Formation During the 980℃ Exothermic Reaction in the Kaolinite-to-Mullite Reaction Series”, J. Am. Ceram. Soc.,1987, Vol.70, No.11, pp.837-842.
55.H. J.Percival, J. F. Duncan, and P. K. Foster,“Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectra” ,J. Am. Ceram. Soc.,1974, Vol.57, No.2, pp.57-61.
56.I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowden, and R. H. Meinhold, “Outstanding Problems in the Kaolinite-Mullite Reaction Sequence Investigated By 29 Si and 27 Al Solid-state Nuclear Magnetic Resonance:I, II, High Temperature Transformation of Metakaolinite”, J. Am. Ceram. Soc., 1985, Vol.68, No.6, pp.298-301.
57.H. Insley and R. H. Ewell,“Thermal Behavior of Kaolin Minerals”, J. Res. Natl. Bur. Stand.,1935, Vol.14, No.5, pp. 615-627.
58.C. Y. Chen, G. S. Lan, W. H. Tuan,“Microstructural Evolution of Mullite during the Sintering of Kaolin Powder Compacts”, Ceramic International, 2000, Vol.26, pp.715-720.
59.G. W. Brindley and M. Nakahira,“Kinetics of Dehydroxylation of Kaolinite and Halloysite”, J. Am.Craem. Soc.,1957, Vol.40, No.10, pp.346-50.
60.林麗娟,“X光繞射原理及應用”,工業材料,1994,No.86,pp.100-109。
61.C. J. McConville, W. E. Lee, and J. H. Sharp,“Microstructural Evolution in Fired Kaolinite”, British Ceramic Transactions, 1998, Vol.97, No.4, pp.162-168.
62.朱小燕,顏春杰,“提高造紙用高嶺土粘度及分散特性的研究”,武漢理工大學學報,2007,Vol.29, No.10,pp.149-152。
63.Haydn H. Murray,“Applied clay mineralogy : occurrences, processing, and application of kaolins, bentonites, palygorskite-sepiolite, and common clays”, Elsevier, 2007, pp.21-70.
64.BROOKFIELD,“More Solutions to Sticky Problems”, Brookfield Engineering Laboratories Inc, Stoughtion Massachusetts, 1993.
65.D. H.Cheng ,“Thixotropy”, International Journal of Cosmetic Science, 1987, Vol.19, pp.151-191.
66.王平,韓振興,朱墨嫻,周元鈞,“流體力學大全”,北京航空航天大學出版社,1990,pp.581-582。
67.趙麗紅,何北海,李軍榮,劉攀,“陰離子對高嶺土分散作用的影響”,華南理工大學製漿造紙工程國家重點實驗室,2008,No.27,pp.53-56。
68.林天賜,“高嶺土粒子凝聚現象之理論與實驗分析”,國立台灣大學化學工程研究所碩士論文,1996,pp.6-7。
69.William O. Roberts,“Colloidal Silica”, ICI Shell Cracking Symposium, Birmingham, UK, 1989, pp.1-12.
70.魯金芝,張福強,張志斌,代志雙,“紫外光引發制備高嶺土/聚(丙烯酸-丙烯醯)高吸水性複合材料”,復合材料學報,2007,Vol.24,No.5,pp.19-22。
71.蘇毅,邱中紅,田輝平,“高嶺土漿液粒度影響因素的研究”,工業催化,2008,Vol.16,No.6,pp.10-12。
72.張烈清,黃道培,彭朴,“不同類型高固含量高嶺土漿液的製備”,無機鹽工業,2002,Vol.34,No.1,pp.5-7。
73.陳錦毅,“高嶺土製備模來石的微結構控制”,國立台灣大學,博士論文,1999,pp.86-87。
74.談國強,劉新年,宁青菊,“矽酸鹽工業產品性能及測試分析”,化學工業出版社,pp.88-89。
75.蔡舒,孟佳宏,陳玉如,楊正方,袁啟明,“莫來石晶粒柱狀生長對莫來石基陶瓷力學性能的影響”,矽酸鹽通報,1999,Vol.4,No.18,pp.1-6。
76.邱春豊,“殼模乾燥問題之探討”,材料與社會,1984,No.19,pp.21-25。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top