跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.32) 您好!臺灣時間:2026/01/07 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏大濱
研究生(外文):Ta-Pin Yen
論文名稱:利用風能及太陽能兩種分散發電於微電網抑制尖峰用電及最佳容量探討
論文名稱(外文):The Optimal Capacity Investigate to Suppress the Peak Loading of Micro-Grid Network with both of Wind Power and Solar Energy Electricity Generation.
指導教授:曾燕明
指導教授(外文):Yen-Ming Tzeng
學位類別:碩士
校院名稱:和春技術學院
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:微電網負載特性尖峰用電風力發電太陽能發電再生能源
外文關鍵詞:Micro-gridLoading CharacteristicPeak DemandWind PowerSolar PowerRenewable Energy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
不同區域之微電網,其用電特性由工業、商業、農業及住宅等四種用戶所組成,因此根據此四種用戶用電所佔之比列形成不同之負載曲線或特性,促使微電網之負載特性可能成為工業導向、商業導向、農業導向、住宅導向之微電網或四種混合組成自非任何一種用戶導向之微電網等五種負載特性,此五種微電網之負載特性各具不同之特性。
對抑制尖峰用電,分散式電源無非針對微電網提供一良好之解決之道。大系統之負載又由許多小系統負載組成,大系統之負載又由許多小為電網負載組成,微電網之尖峰用電若被再生能源發電之分散式電源抑制,相對小系統及大系統之尖峰亦遭平抑。
本文利用兩種再生能源分散發電系統併聯於微電網抑制尖峰用電最佳策略探討,針對此風力發電及太陽能發電兩種再生能源分散式發電系統因風速、太陽光強度及面板溫度所產生電力來衡量5種微電網所形成之負載曲線之負載尖峰值平抑之最佳再生能源分散發電設立容量。
The load characteristics of micro-grids in various areas are comprised by the typical industrial, commercial, agricultural and residential customers. By summation the power consumption of each typical customer to form the micro-grid network such as the industry-oriented, commerce-oriented, agriculture-oriented, resident-oriented and mixed type micro-grids.
To suppress peak demand the distributed power supply has proven to be the best practice for micro-grid. Whereas main system is consist of many sub-systems and the loadings of main systems can be further categorized by micro-grids. Once the peak demand of micro-grids is suppressed by the distributed power supply of renewable energy, in the same view of point, the peak demand of the main systems is suppressed too.
It proposed two kind of renewable energy distribution generation system to parallel into the micro-grid network to supply the power with Tai-power at the same time. Therefore, that can suppressed peak load to investigate the optimal timing strategy of the industrial-oriented, commercial-oriented, agricultural-oriented, residential-oriented and hybrid five combination demands.
目 錄
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1研究背景及動機 1
1-2章節架構 6
第二章 風力發電及太陽能發電原理 8
2-1現今世界利用再生能源發電應用情況 8
2-1-1太陽能電力 8
2-1-2水力發電 10
2-1-3地熱發電 10
2-1-4沼氣發電 11
2-1-5洋流發電 12
2-1-6風力發電 12
2-1-7溫差發電 14
2-1-8潮汐發電 15
2-1-9生質能 15
2-2現今台灣利用風力發電及太陽能發電應用情況 17
2-2-1、風力發電發展現況 17
2-2-2、太陽能發展現況 18
2-3風能發電原理、風場及發電模型之建立 20
2-3-1風能 20
2-3-2風場區分 20
2-3-3風能發電原理 22
2-3-4風能發電模型之建立 23
2-3-5風能發電之數學模型 25
2-4太陽能發電原理、照度、溫度及發電模型之建立 28
2-4-1太陽能發電原理 28
2-4-2太陽能電池等效電路 29
2-4-3太陽能發電與照度關係 31
2-4-4太陽能發電模型之建立 33
第三章各種微網路(Micro-grid network)之負載特性 35
第四章利用風能太陽能兩種再生能源分散發電於抑制尖峰用電原理 39

4-1能源分散發電於抑制尖峰用電原理 41
4-2五種尖峰用電抑制效能指標 49
4-3 L.F.=1.0時五種用戶抑制尖峰量 53
4-4單獨利用風能發電抑制各種微網路尖峰用電探討 57
4-5利用太陽能發電抑制各種微網路尖峰用電探討 65
4-6結合太陽能風能太陽能兩種發電於抑制尖峰用電探討 74
4-7單獨風能、單獨太陽能及結合太陽能風能太陽能發電於抑制尖峰用電之比較探討 83
第五章 結論與未來研究方向 99
5-1 結論 99
5-2 未來研究方向 101
參考文獻 102
圖 目 錄
圖1-1本文執行流程圖 5
圖2-1微電網所在地高度50M之小時平均風速曲線圖 22
圖2-2風能發電原理及並聯示意圖 23
圖2-3 Whisper 500 3kW 之風力機之發電量與風速關係圖 24
圖2-4 Whisper 500對硬風速下每個月之平均發電量 24
圖2-5風能發電數學模型與實際值之相對誤差曲線圖 27
圖2-6配合所在地之實際風速其風力發電標么曲線圖 27
圖2-7 太陽能發電步驟示意圖 29
圖2-8 太陽能電池等效電路圖 29
圖2-9 太陽能電池串、並聯示意圖 30
圖2-10 太陽能發電功率與照度關係圖 31
圖2-11配合所在地之實際照度曲線圖 32
圖2-12配合所在地之際照度其太陽能發 電標么曲線圖 32
圖2-13太陽能發電數學模型與實際值之相對誤差曲線圖 34
圖3-1農業用戶導向微電網負載曲線圖 36
圖3-2商業用戶導向微電網負載曲線圖 36
圖3-3住宅用戶導向微電網負載曲線圖 37
圖3-4工業用戶導向微電網負載曲線圖 37
圖3-5混合用戶微電網負載曲線圖 38
圖4-1實際建置風力發電機單機3kw 40
圖4-2實際建置風力發電(9kW)及太陽能發電(5.4kW) 40
圖4-3抑制尖峰負載之示意圖 44
圖4-4農業型負載抑制尖峰用電指標 50
圖4-5商業型負載抑制尖峰用電指標 50
圖4-6工業型負載抑制尖峰用電指標 52
圖4-7住宅型負載抑制尖峰用電指標 53
圖4-8混合型負載抑制尖峰用電指標 54
圖4-9農業型L.F.=1.0抑制尖峰量 54
圖4-10商業型L.F.=1.0抑制尖峰量 53
圖4-11住宅型L.F.=1.0抑制尖峰量 55
圖4-12混合型L.F.=1.0抑制尖峰量 56
圖4-13工業型L.F.=1.0抑制尖峰量 56
圖4-14商業導向微電網LF與各容量關係曲線圖 60
圖4-15農業導向微電網LF與各容量關係曲線圖 61
圖4-16工業導向微電網LF與各容量關係曲線圖 63
圖4-17住宅導向微電網LF與各容量關係曲線圖 65
圖4-18商業導向微電網太陽能發電LF與容量關係區線圖 68
圖4-19農業導向微電網太陽能發電LF與容量關係區線圖 69
圖4-20工業導向微電網太陽能發電LF與容量關係區線圖 71
圖4-21住宅導向微電網太陽能發電LF與容量關係區線圖 73
圖4-22商業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰LF與容量關係曲線圖 76
圖4-23農業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰LF與容量關係曲線圖 78
圖4-24工業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰LF與容量關係曲線圖 80
圖4-25住宅導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰LF與容量關係曲線圖 83
圖4-26商業單獨風能、單獨太陽能及結合太陽能風能太陽能蓄電設備容量比較曲線圖 87
圖4-27商業單獨風能、單獨太陽能及結合太陽能風能太陽能發電容量發電設置容量值比較曲線圖 88
圖4-28農業單獨風能、單獨太陽能及結合太陽能風能太陽能蓄電設備容量比較曲線圖 90
圖4-29農業單獨風能、單獨太陽能及結合太陽能風能太陽能發電容量發電設置容量值比較曲線圖 90
圖4-30工業單獨風能、單獨太陽能及結合太陽能風能太陽能蓄電設備容量比較曲線圖 94
圖4-31工業單獨風能、單獨太陽能及結合太陽能風能太陽能發電容量發電設置容量值比較曲線圖 94
圖4-32住宅單獨風能、單獨太陽能及結合太陽能風能太陽能蓄電設備容量比較曲線圖
97
圖4-33住宅單獨風能、單獨太陽能及結合太陽能風能太陽能發電容量發電設置容量值比較曲線圖 98
表 目 錄
表2-1風場之區分判別分類表 20
表2-2為二次至六次式加以回歸多項式之係數值 25
表2-3為二次至六次式加以回歸多項式之與實際值之相對誤差表 26
表2-4為太陽能發電數學模型回歸多項式之太陽能發電係數值 33
表2-5太陽能發電數學模型與實際值之相對誤差表 34
表4-1商業導向型為電網風能發電抑制之風能發電機及蓄電設備額定
值 59
表4-2農業導向型為電網風能發電抑制之風能發電機及蓄電設備額定
值 61
表4-3工業導向型為電網風能發電抑制之風能發電機及蓄電設備額定
值 63
表4-4混合導向型為電網風能發電抑制之風能發電機及蓄電設備額定值 64
表4-5住宅導向型為電網風能發電抑制之風能發電機及蓄電設備額定值 65
表4-6商業導向微電網太陽能發電抑制之太陽能發電機及蓄電設備
67
表4-7農業導向微電網太陽能發電抑制之太陽能發電機及蓄電設備
69
表4-8工業導向微電網太陽能發電抑制之太陽能發電機及蓄電設備
71
表4-9混合導向微電網太陽能發電抑制之太陽能發電機及蓄電設備
72
表4-10住宅導向微電網太陽能發電抑制之太陽能發電機及蓄電設備
73
表4-11商業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰發電機及蓄電設備設置容量值 76
表4-12農業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰發電機及蓄電設備設置容量值 78
表4-13工業導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰發電機及蓄電設備設置容量值 80
表4-14混合導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰發電機及蓄電設備設置容量值 81
表4-15住宅導向微電網結合太陽能風能太陽能兩種發電於抑制尖峰
發電機及蓄電設備設置容量值 82
表4-16商業導向三種發電組合 87
表4-17農業導向三種發電組合 89
表4-18工業導向三種發電組合 93
表4-19混合導向三種發電組合 95
表4-20 住宅導向三種發電組合 97
[1]J.F. Manwell, J. G. McGowen, A. L. Rogers, “Wind Energy Explained”, John Willey & Sons, 2002.
[2]E. Muljadi and C.P. Butterfield, “Pitch-controlled variable-speed wind turbine generation,” IEEE Trans. on Industry Applications, Vol. 37, Issue 1, Jan.-Feb. 2001, pp. 240-246.
[3] M. Rogol,S. Doi,Anthony Wilkinson,“Sun Screen Investment Opportunities in Solar Power,”Solar power sector outlook,CLSA Asia-Pacific Markets,2004.
[4]Holdsworth, X.G. Wu, B.J. Ekanayake, and N. Jenkins, “Comparison of Fixed Speed and Doubly-Fed Induction Wind Turbines during Power System Disturbances,” IEE proceedings on transmission and distribution, Vol.150, pp.343-352, 2003.
[5]C. Sriphung and R. Dhariwal, “Modelling and Simulation of a Fluid-Driven Microturbine,” 2005 International Symposium on Electronics Materials and Packaging (EMAP2005), December 2005.
[6]C. Sriphung and R. Dhariwal, “Modelling and Simulation of a Fluid-Driven Microturbine,” 2005 International Symposium on Electronics Materials and Packaging (EMAP2005), December 2005.
[7]K.Tan, T. T.Yao and S. Islam, “Effect of Loss Modeling on Optimum Operation of Wind Turbine Energy Conversion Systems”, IEEE CNF, The 7th International Power Engineering Conference, pp. 1 – 6, Nov. 2005.
[8]A. B. Raju, K. Chatterjee and B. G. Fernandes, “A Simple Maximum Power Point Tracker for Grid Connected Variable Speed Wind Energy Conversion System With Reduced Switch Count Power Converters”, EEE 34th Annual Power Electronics Specialist Conference, Vol: 2, pp., 15-19 June 2003 748 – 753.
[9]E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion Applications,” IEEE Trans. on industrial Electronics, Vol.53, Apr. 2006, pp.486-494.
[10] R. Billinton and R. Karki, “Capacity Expansion of Small Isolated Power Systems Using PV and Wind Energy,” IEEE Trans. On Power Systems, Vol. 16, No. 4, Nov. 2001, pp. 892-897.
[11]Alexandru Forrai, Hirohito Funato, Yukihiro Yanagita, and Yoshitsugu Kato, “Fuel-Cell Parameter Estimation and Diagnostics,”IEEE Transactions On Energy Conversion, Vol.20, No.3, September 2005.
[12]Frano Barbir, “PEM Fuel Cells:Theory and Practice,” Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Vol.1-3, No. 1-71, 2005.
[13]R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electronics, vol. 20, no. 4, pp. 847-856, July 2005.
[14]S. Kim, S. Shimpalee, and J. W. Van Zee, “The effect of stoichiometry on dynamic behavior of a proton exchange membrane fuel cell (PEMFC) during load changes,” Journal of Power Sources, Vol. 135, No. 1-2, September 2004, pp.110-121.
[15]M. Krcum, A. Gudelj and Z. Juric, “Fuel cells for marine application,” Proceedings of the 46th International Symposium on Electronics in Marine, 16-18 June 2004, pp.491-495.
[16]Kaushik Rajashekara, “Hybrid Fuel-Cell Strategies for CleanPower Generation,” IEEE transactios on applicatons , VOL. 41, NO. 3, MAY/JUNE 2005.
[17]Haiping Xu, Li Kong, and Xuhui Wen, “Fuel Cell Power System,” IEEE transactios on power electronics , VOL. 19 , NO. 5 , SEPTEMBER 2004.
[18]E. Koutroulis and K. Kalaitzakis, “Novel battery charging regulation system for photovoltaic applications,” IEE Proceedings Electric Power Applications, Vol.151, No.2, Mar. 2004, pp.191-197.
[19]Il-Kyu Hwang and Jin-Wook Baek, “Wireless Access Monitoring and Control System based on Digital Door Lock,” IEEE Trans. On Consumer Electronics, Vol. 53, No. 4, Nov. 2007. pp 1724-1730.
[20] F. Ygge, “Market-oriented programming and its application to power load management,” Ph.D. dissertation, Department of Computer Science, Lund University, 1998.
[21] M. P. Wellman, “A market-oriented programming environment and its application to distributed multicommodity flow problems,” Journal of Artificial Intelligence Research, vol. 1, No. 1, pp. 1–23, 1993.
[22] L. David, “ Linear and Nonlinear Programming,” Addison-Wesley, Calif, pp. 403-406, 2nd edition, 1984.
[23] J. F. Kurose and R. Simha, “ A microeconomic approach to optimal resource allocation in distributed computer systems,” IEEE Transactions on Computers, 38(5), pp. 705-717, 1989.
[24] J. H. Choi and J. C. Kim, “Advanced voltage regulation method at the power distribution systems interconnected with dispersed storage and generation systems,” IEEE Transactions on Power Delivery, Vol. 15, No. 2, Apr 2000, pp. 691-696.
[25]M. T. Chen, C. W. Lu, Y. X. Tzeng, and W. W. Chen, "Prototype Design of a Web-Based Instrumentation System for real-time Remote Power Quality Monitoring," Proceedings of the 25th Symposium on Electrical Power Engineering, Taiwan, Nov. 2004, pp.1200-1205.
[26]B. Lasseter, “Microgrids,” IEEE Power Engineering Society Winter Meeting, Vol. 1, pp. 146-149, Feb. 2001.
[27]Y. Li, D. M. Vilathgamuwa and P. C. Loh, “Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator,” IEEE Transactions on Industry Applications, Vol. 41, No. 4, pp. 1707-1719, 2005.
[28] Ching Lung Lin, Linsong Weng, Hong-Tzer Yang, “Using LAN and Wireless Technology to Setup a Dynamic Local Power Dispatch System”, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, U.K., 24-26 May 2005, pp. 588-593
[29]Zecevic, G., “Web based interface to SCADA system”,Power System Technology, 1998. Proceedings. POWERCON '98. 1998 International Conference on , Volume: 2 , 18-21 Aug. 1998, pp.1218 - 1221.
[30]Kumar, R.; Kamal, S.A.; Khan, F.M.; ”Designing and implementing SCADA subsystem for textile industry”, E-Tech 2004 , 31 July 2004, pp. 88 - 91.
[31]Bin Qiu; Hoay Beng Gooi; Yilu Liu; Eng Kiat Chan, “Internet-based SCADA display system”, Computer Applications in Power, IEEE , Volume: 15 , Issue: 1 , Jan. 2002, pp. 14 - 19.
[32]Jen-Hao Teng; Lee, R.; Yi-Hwa Liu; Rong-Ceng Leou, “Integration of Internet and virtual instruments to develop an industrial SCADA”, Power Engineering Society Summer Meeting, 2J001. IEEE , Volume: 3 , 15-19 July 2001, pp. 1509 -1514.
[33]Seki, T.; Kubota, K.; Tsuchiya, T.; Tamura, S.; Watanabe, H.; Tanaka, T.; “Power systems information delivering system using Internet technology”, Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES , Volume: 1 , 6-10Oct. 2002, pp. 12 - 17.
[34]Rahim, N.A., Selvaraj, J., Krismadinata, Hysteresis Current Control and Sensorless MPPT for Grid-Connected Photovoltaic Systems, Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on power systems, pp.572–577, June 2007
[35] Mohod, S.W., Aware, M.V., Grid Power Quality with Variable Speed Wind Energy Conversion, Power Electronics, Drives and Energy Systems, 2006. PEDES '06. International Conference on, pp.1-5, Dec. 2006
[36]L. Coles and R. W. Beck, Distributed generation and provide an appropriate customer price response to help fix wholesale price volatility, Proceedings of IEEE Power Engineering Society Winter Meeting, vol. 1, pp.141-143, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top