跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李孟峰
研究生(外文):Meng-Feng Li
論文名稱:多目標之生產排程研究-含規則性與非規則性衡量準則
論文名稱(外文):On Multiple Objectives Production Scheduling – Including Regular and Non-regular Performance Measures
指導教授:黃榮華黃榮華引用關係
指導教授(外文):Rong-Hwa Huang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:管理學研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:34
中文關鍵詞:排程總流程時間最大提前時間規則性與非規則性衡量準則
外文關鍵詞:SchedulingFlowtimeMaximum EarlinessRegular and Non-regular Performance MeasuresSingle Machine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
良好的排程作業能讓有限的生產資源獲得最適當的分配,進而使得生產系統能夠以低成本、高效率產出合乎顧客要求的產品或服務。而排程之良寙,可以用衡量準則來評估,其主要分為規則性與非規則性衡量準則,過去學者所研究之多目標排程問題,大多侷限在規則性衡量準則。近年來,及時化的觀念受到更多重視,生產系統要求排程作業需同時考量在製品存貨與製成品存貨成本,亦即必須要同時考慮規則性與非規則性衡量準則。本研究以最大提前時間與總流程時間之雙目標排程為探討主題。
研究主題以兩種組合型式進行:首先考慮單機之特定最大提前時間極小化總流程時間排程問題。本研究針對此問題,建立最佳解演算法,能夠在極短的時間內獲致最佳解。再者,考慮單機之總流程時間與最大提前時間之有效排序問題。本研究依據總流程時間與最大提前時間之特性,並發展出求解此問題的演算法。理論證明與模擬資料測試結果上,都充分顯示本研究所提之演算法,可以在很短的時間內取得完整的有效排序集合。
An excellent operations scheduling can reduces production cost by arranging the orders. To consider multiple objectives production scheduling can fulfill the complexity requirement of management. So, to consider multiple objectives production scheduling is necessary.
The performance measure including regular and non-regular, it can be use to measure scheduling. In the past, almost scholars consider regular performance measure in scheduling problems. Recently, since the concept of JIT (Just In Time) had taken into consideration, so to consider both regular and non-regular performances measures on scheduling are necessary in JIT production system. Because JIT requires that the production system must to reduce in-process inventory and finished inventory. In other words, the manager must to consider both the total flowtime and maximum earliness performance measures on the scheduling.
The study presents the algorithms and shows two problems can be solved. One problem is to minimize flowtime subject to given maximum earliness on single machine. Second problem is to minimize flowtime and maximum earliness on a single machine. The computational results show that the algorithms can get the optimal solution in tiny time.
目錄
目錄 I
圖目錄 III
表目錄 IV
第一章 緒論 1
一、問題背景與研究動機 1
二、研究範圍與限制 3
三、研究目的 5
四、研究流程 5
第二章 文獻探討 8
一、多目標之單機排程問題 8
二、其他相關之多目標排程問題 10
第三章 單機之特定Emax極小化F排程問題 12
一、引言 12
二、定理發展 13
三、建立演算法 13
四、釋例 14
五、資料測試 15
六、小結 17
第四章 單機之F與Emax有效排序問題 18
一、引言 18
二、相關定理 18
三、建立演算法 20
四、釋例 21
五、資料測試 26
六、小結 28
第五章 結論與建議 29
一、結論 29
二、建議 30
參考文獻 31


圖目錄

圖1 - 1 - 1:研究流程圖 6
圖4 - 4 - 1:n/1//(F, Emax)釋例結果示意圖 26

表目錄

表3 - 4 - 1:n/1//F│Emax釋例 14
表3 - 4 - 2:n/1//F│Emax 釋例結果 14
表3 - 5 - 1:測試資料型式 15
表3 - 5 - 2:n/1//F│Emax 資料測試結果 16
表4 - 4 - 1:n/1//(F, Emax)釋例 21
表4 - 4 - 2:n/1//(F, Emax)釋例彙整表 25
表4 - 5 - 1:n/1//(F, Emax)資料測試結果 27
參考文獻

1.Azizoglu, M., Koksalan, M. and Koksalan, S. K., “Scheduling to minimize maximum earliness and number of tardy jobs where machine idle time is allowed,” Operational Research Society, 54, 2003, pp.661-664.
2.Azizoglu, M., Kondakci, S. and Koksalan, M., “Single machine scheduling with maximum earliness and number tardy,” Computers and Industrial Engineering, 45, 2003, pp.257-268.
3.Chang, P. C. and Su, L. H., “Scheduling n jobs on one machine to minimize the maximum lateness with a minimum number of tardy jobs,” Computers and Industrial Engineering, 40, 2001, pp.349-360.
4.Cai, X. Q. and Zhou, S., “Stochastic scheduling on parallel machines subject to random breakdowns to minimize expected costs for earliness and tardy jobs,” Operations Research, 47, May/Jun 1999, pp.422-437.
5.Chen, T. S., Qi, X. T. and Tu, F. S., “Single machine scheduling to minimize weighted earliness subject to maximum tardiness,” Computers Operations Research, 24, 1999, pp.147-152.
6.Eck, B. T. and Pinedo, M., ”On the minimization of the makespan subject to flowtime optimality,” Operations Research, 41, Jul/Aug 1993, pp.797-801.
7.French, S., Sequencing and scheduling: An Introduction to the Mathematics of the Job-Shop, New York: Ellis Horwood Ltd., 1982.
8.Feldmann, M. and Biskup, D., “Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic approaches,” Computers and Industrial Engineering, 44, 2003, pp.307-323.
9.Gupta, J. N. D., Ruiz-Torres, A. J. and Webster, S., “Minimizing maximum tardiness and number of tardy jobs on parallel machines subject to minimum flow-time,” Journal of the Operational Research Society, 54, 2003, pp.1263-1274.
10.Guner, E., Erol, S. and Tani, K., “One machine scheduling to minimize the maximum earliness with minimum number of tardy jobs,” International Journal of Production Economics, 55, 1998, pp.213-219.
11.Jones, M. S. and Russell, R. S. “Multiple performance measures in the selection of a sequencing rule.” International Journal of Operations and Production Management. 10, 1990, pp.29-41.
12.Koulamas, C., “Single-machine scheduling with time windows and earliness/tardiness penalties,” European Journal of Operational Research, 91, 1996, pp.190-202.
13.Kondacki, K. S. and Bekiroglu, T., “Scheduling with bicriteria: Total flowtime and number of tardy jobs,” International Journal of Production Economics, 53, 1997, pp.91-99.
14.Koksalan, M., Azizoglu, M. and Kondakci, S. K., “Minimizing flowtime and maximum earliness on a single machine,” IIE Transactions, 30, 1998, pp.192-200.
15.Liao, C. J. and Huang, R. H., “An algorithm for minimizing the Range of lateness on a single machine,” Journal of the Operational Research Society, 42, 1991, pp.183-186.
16.Nelson, R. T., Sarin R. K. and Daniels R. L., “Scheduling with multiple performance measures: The one-machine case,” Management Science, 32, 1986, pp.464-479.
17.Rajendran, C., “Formulations and heuristics for scheduling in a Kanban flowshop to minimize the sum of weighted flowtime, weighted tardiness and weighted earliness of containers,” International Journal of Production Research, 37, 1999, pp.1137-1158.
18.Soroush, H. M., “Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs,” European Journal of Operational Research, 113, 1999, pp. 450-468
19.Schaller, J., “Single machine scheduling with early and quadratic tardy penalties,” Computers and Industrial Engineering, 46, 2004, pp.511-532.
20.Smith, W. E., “Various optimizers for single-stage production,” Naval Research Logistic Quarterly, 3(1), 1956, pp.59-66.
21.Toktas, B., Azizoglu, M. and Koksalan, S. K., “Two-machine flow shop scheduling with two criteria: maximum earliness and make-span,” European Journal of Operational Research, 157, 2003, pp.286-295.
22.Ventura, J. A. and Radhakrishnan, S., “Single machine scheduling with symmetric earliness and tardiness penalties,” European Journal of Operational Research, 144, 2003, pp.598-612.
23.Van Wassenhove, L. N. and Gelders, L. F., “Solving a bicriterion scheduling problem,” European Journal of Operational Research, 4, 1980, pp.42-48.
24.Van Wassenhove, L. N. and Baker, K. R., “A bicriterion approach to time/cost trade-offs in sequencing,” European Journal of Operational Research, 11, 1982, pp.48-54.
25.Wu, C. C., Lee, W. C. and You, J. M., “Trade-off solutions in a single-machine scheduling problem for minimizing total earliness and maximum tardiness,” International Journal of Systems Science, 31, 2000, pp.639- 647.
26.Yeung, W. K., Oguz, C. and Edwin Cheng, T. C., “Two-stage flowshop earliness and tardiness machine scheduling involving a common due window,” International Journal of Production Economics, 90, 2004, pp.421-434.
27.Zheng, W. X., Nagasawa, H. and Nishiyama, N., “Single-machine scheduling for minimizing total cost with identical, asymmetrical earliness and tardiness penalties,” International Journal of Production Research, 31, 1993, pp.1611-1620.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top