跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃喻暄
研究生(外文):Yu-Sam Huang
論文名稱:應用於兆級序列傳輸系統之等化器技術
論文名稱(外文):Multi-Gbps Equalizer Technology for Serial Link System
指導教授:周世傑周世傑引用關係
指導教授(外文):Shyh-Jye Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:81
中文關鍵詞:連續時間領域等化器離散時間領域等化器序列傳輸Sign-sign 最小均方根演算法等化器預先
外文關鍵詞:Continuous-time equalizerdiscrete-time equalizerserial linkSign-Sign LMS algorithmequalizerspeculation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:561
  • 評分評分:
  • 下載下載:141
  • 收藏至我的研究室書目清單書目收藏:0
在多媒體時代的今天,各種高速串列傳輸技術廣泛的使用在許多高效能的電子產品中。為了讓訊號經過各種傳輸通道破壞後可以保持一定的品質,等化器在高速串列傳輸的系統中扮演了重要的角色。根據信號處理的方式我們可以將等化器分成連續時間領域等化器跟離散時間領域等化器。
在本論文中,首先我們提出了一個操作在6 Gbps 的連續時間領域等化器。在等化電路的輸入端我們使用了一個準位平移電路來減少通道輸出端直流電壓準位漂移對等化器造成的影響。準位平移電路同時也提供低頻訊號的放大功能。為了減少在增加高頻放大率的同時對低頻訊號的抑制量,我們將等化電路設計成兩級串接的模式。我們提出的連續時間領域等化器在時脈訊號頻率3 GHz 可以提供13.87 dB 的補償。實做晶片使用聯電標準臨界電壓90 耐米互補式金氧半導體製程來製造。佈局之後的模擬結果,位於等化器輸出端的信號眼圖可以開至正負250 mV,而緩衝器的輸出端可以將信號眼圖張開到規格所定的正負300mV。電路總面積為0.49 × 0.49 mm2。在1.0 V 的操作電壓下,電路總功率為78.83 mW。
接著,我們對一個半速率的決策回授等化器電路架構[8]提出跳躍式係數更新方案以及乒乓係數更新方案。該電路結構擁有5筆過去的資料消除符號間干擾並且使用一個位元的猜測方法來紓解時間上得限制。係數更新的演算法是使用sign-sign LMS演算法。在跳躍式係數更新方案中,係數計算電路的操作頻率將會降低而且功率消耗也會減少。乒乓係數更新方案則是在每個資料路徑上省下一個用來計算錯誤量正負號的比較器。針對這兩個係數更新方案,我們執行許多不同條件的模擬並且整理決策回授等化器係數收斂時間的表現。希望能夠藉此得到設計電路時在規格的規範下選擇相關參數的方針,尤其是決策回授等化器係數收練的速度。
In the multi-media era, many high-speed serial link trarnsmission technologies are developed and are widely used for high performance modern electronic product. In order to maintain the data quality that will be attenuated by communication channel, the equalizer becomes an important component in the high-speed serial link system. Based on the type of data processing, the equalizer can be categoried into continuous-time equalizer and discrete-time equalizer.
In this thesis, we first propose a continuous-time qualizer that operates at 6 Gbps. We take a level-shifter stage in the front of our proposed equalizer for minimizing the DC voltage level variation in the equalizer input and for providing the low-frequency gain in the proposed circuit. In the equalization block, we use two serial cascade stages to minimize the gain suppression at low frequency while
to boost the gain in high frequency. The proposed equalizer can compensate 13.87 dB channel loss at clock frequency of 3 GHz. The test chip is fabricated in UMC 90 nm CMOS regular-Vt process. The post-layout simulation results
show that the data eye in the output of equazlier stage is about ±250 mV, and the data eye in the output of buffer stage can reach ±300 mV that meets our specification. Total area of our proposed equalizer including pads is 0.49 × 0.49
mm2 and power consumption is 78.83 mW under 1.0 V supply voltage.
Secondly, we propose a hopping coefficients update and ping-pong coefficients update schemes for a discrete-time half-rate DFE (Decision-feedback equalizer) architecture [8]. The architecture uses five taps to cancel the ISI (intersymbol-interference) effects and uses the speculation method to relax the timing constrain.
The algorithm used for coefficients update is the sign-sign LMS (least-mean-square) algorithm. For the hopping update scheme, the operation frequency of coefficients update block can be reduced and the power can be saved. For ping-pong update scheme, we calculate the sign of error under different conditions in these two data paths. The ping-pong update scheme saves one comparator for calculating the sign of error in each data path. For these two update schemes, we
run different conditions and summary the convergent performance. We get the guideline of choosing parameters in the proposed equalizer under some system specifications especially the speed of convergence.
摘要 ii
Abstract iv
誌謝 vi
Content vii
List of Tables x
List of Figures xi
1 Introduction 1
1.1 Challenges in High-Speed Applications 1
1.2 Motivation 3
1.3 Thesis Organization 3
2 Theory of Equalizer 5
2.1 Equalizers in High-Speed Application 5
2.1.1 Physical Limitation of High-Speed Transmission 5
2.1.2 Equalizer and Compensation 8
2.2 Concepts of Equalizers 10
2.2.1 Continuous-Time Equalizers 10
2.2.2 Discrete-Time Equalizers 12
2.3 Traditional algorithm of discrete-time Equalizer 15
2.3.1 Zero Forcing Algorithm 16
2.3.2 Mean-Square Error Algorithm 17
2.4 General Topology of Equalization 18
2.4.1 Linear Equalization 18
2.4.2 Decision Feedback Equalization 19
3 Continuous-Time Equalizer 21
3.1 Overview 21
3.2 Motivation and the proposed architecture 22
3.3 Circuit design and simulation results 24
3.3.1 Level-Shifter 24
3.3.2 Equalizer stage 27
3.4 Implementation and layout 39
3.5 Measurement environment setup 47
4 Discrete-Time equalizer 48
4.1 Overview 48
4.2 Techniques and architectures for discrete-time DFE 49
4.3 Sign-sign least-mean-square algorithm 52
4.3.1 Method of steepest descent 52
4.3.2 Sign-sign LMS algorithm 54
4.4 Design parameters selection based on power and area consideration 55
4.4.1 Architecture in our model 56
4.4.2 Hopping coefficients update scheme 58
4.4.3 Ping-pong coefficients update scheme 63
5 Conclusions and Future Works 77
5.1 Conclusions 77
5.2 Future Works 78
References 79
[1] W. J. Dally and J. Poulton, “Transmitter Equalization for 4-Gbps signaling,”IEEE Micro, vol. 17, pp. 48–56, Jan./Feb. 1997.
[2] J.-S. Choi, M.-S. Hwang, and D.-K. Jeong, “A 0.18-μm CMOS 3.5-Gb/s Continuous-Time Adaptive Cable Equalizer Using Enhanced Low-Frequency Gain Control Method,” IEEE Journal of Solid-State Circiut, vol. 39, pp. 419–425, Mar. 2004.
[3] Y. Tomita, M. Kibune, J. Ogawa, W. W.Walker, H. Tamura, and T. Kuroda,“A 10Gb/s Receiver with Equalizer and On-chip ISI monitor in 0.11-μm CMOS,” IEEE Journal of Solid-State Circiut, vol. 40, pp. 986–993, Apr.2005.
[4] J. E. C. Brown, P. J. Hurst, and L. Der, “A 35 Mb/s Mixed-Signal Decision-Feedback Equalizer for Disk Driver in 2-μm CMOS,” IEEE Journal of Solid-State Circiut, vol. 31, pp. 1258–1266, Sept. 1996.
[5] M. Q. Le, P. J. Hurst, and J. P. Keane, “An Adaptive Analog Noise-Predictive Decision-Feedback Equalizer,” IEEE Journal of Solid-State Circiut,vol. 37, pp. 105–113, Feb. 2002.
[6] R. Farjad-Rad, C.-K. K. Yang, M. A. Horowitz, and T. H. Lee, “A 0.3-μm CMOS 8-Gb/s 4-PAM Serial Link Transceiver,”IEEE Journal of Solid-State Circiut, vol. 35, pp. 757–764, May 2000.
[7] V. Stojanovic, A. Ho, B. W. Garlepp, F. Chen, J. Wei, G. Tsang, E. Alon,R. T. Kollipara, C. W. Werner, J. L. Zerbe, and M. A. Horowitz, “Autonomous Dual-Mode (PAM2/4) Serial Link Transceiver With Adaptive Equalization and Data Recovery,” IEEE Journal of Solid-State Circiut, vol. 40, pp. 1012–1026, Apr. 2005.
[8] J. F. Bulzacchelli, M. Meghelli, S. V. Rylov, W. Rhee, A. V. Rylyakov, H. A. Ainspan, B. D. Parker, M. P. Beakes, A. Chung, T. J. Beukema, P. K. Pepeljugoski, L. Shan, Y. H. Kwark, S. Gowda, and D. J. Friedman, “A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology,”IEEE Journal of Solid-State Circiut, vol. 41, pp. 2885–2900, Dec. 2006.
[9] T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason,
W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes
Core With Feed-Forward and Decision-Feedback Equalization,” IEEE Journal
of Solid-State Circiut, vol. 40, pp. 3633–2645, Dec. 2005.
[10] Y. Kudoh, M. Fukaishi, and M. Mizuno, “A 0.13-μm CMOS 5-Gb/s 10-m
28AWG Cable Transceiver With No-Feedback-Loop Continuous-Time Post-
Equalizer,” IEEE Journal of Solid-State Circiut, vol. 38, pp. 741–746, May
2003.
[11] D. K. Cheng, Field and Wave Electromagnetics. Addison Wesley, 1989.
[12] H. M. Tremaine, Audiocyclopedia. Howard W. Sams, 1969.
[13] A. Emami-Neyestanak, A. Vazaghani, J. F. Bulzacchelli, A. Rylyakov, C.-K. K. Yang, and D. J. Friedman, “A 6.0-mW 10.0-Gb/s Reveiver With Switched-Capacitor Summation DFE,” IEEE Journal of Solid-State Circiut,vol. 42, pp. 889–896, Apr. 2007.
[14] K.-L. J. Wong, A. Rylyakov, and C.-K. K. Yang, “A 5-mW 6-Gb/s Quarter-Rate Sampling Receiver With a 2-Tap DFE Using Soft Decisions,” IEEE Journal of Solid-State Circiut, vol. 42, pp. 881–888, Apr. 2007.
[15] J. Proakis, Digital Communication. McGrawHill, 2001.
[16] J. R. Barry and G. M. Edward A. Lee, David, Digital Communication.Springer, 2004.
[17] C. A. Belfiore and J. John H. Park, “Decision Feedback Equalization,” Proceedings of the IEEE, vol. 67, pp. 1143–1156, Aug. 1979.
[18] S. Kasturia and J. H. Winters, “Techniques for high-speed implementatin of nonlinear cancellation,” IEEE Journal on selected areas in communications, vol. 9, pp. 711–717, June 1991.
[19] S. Haykin, Adaptive filter theory. Prentice-Hall, 2004.
[20] K. Krishna, D. A. Yokoyama-Martin, A. Caffee, C. Jones, M. Loikkanen, J. Parker, R. Segelekn, J. L. Sonntag, J. Stonick, S. Titus, D. Weinlader, and S. Wolfer, “A Multigigabit Backplane Transceiver Core in 0.13-μm CMOS
With a Power-Efficient Equalization Architecture,” IEEE Journal of Solid-State Circiut, vol. 40, pp. 2658–2666, Dec. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top