跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉嘉
研究生(外文):Wei- Chia Huang
論文名稱:鎂對無鉛銲錫界面反應與微結構影響之研究
論文名稱(外文):Effect of Magnesium on Interfacial Reaction and Microstructures of Lead-Free Solders
指導教授:張世穎張世穎引用關係
指導教授(外文):Shih-Ying Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:錫鬚Mg2Sn無鉛銲錫鎂合金
外文關鍵詞:tin whiskersmagnesium alloylead-free solderMg2Sn
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金添加於Sn-3Ag-0.5Cu無鉛銲錫合金中能有效提升銲錫的潤濕性,可直接對許多難潤濕的陶瓷、玻璃、鋁合金或鎂合金等材料進行接合。銲錫合金中鎂合金與錫、銀反應生成的Mg2Sn與(Ag,Mg)3Sn介金屬會造成錫鬚的異常成長。本研究藉由時效處理探討Mg2Sn、(Ag,Mg)3Sn介金屬形成與時效溫度及時效時間對含鎂之Sn-3Ag-0.5Cu合金錫鬚成長的影響。隨著鎂合金在Sn-3Ag-0.5Cu合金中的添加量增加,會因內應力的增加而使得錫鬚數量明顯變多,然而卻可抑制銲錫中的Cu6Sn5介金屬的生成。隨著時效溫度提高及時效時間增加,會造成錫鬚的數量與長度增加。由於銲錫合金內應力的不斷釋放,經150℃時效反應錫鬚初期成長速率快,隨著時效反應達400hr其成長速率會逐漸減緩。
Adding magnesium alloy in Sn-3Ag-0.5Cu lead-free solders alloy can effectively improve the wettability of the solders. It can directly wet many materials which are difficult to be wetted, such as ceramics, glass, aluminum or magnesium alloys. Magnesium reacts with tin in solders to form Mg2Sn and (Ag,Mg)3Sn intermetallic compounds. The intermetallic compounds cause tin whisker abnormal growth. As inner stress is increased, the amount of tin wisker will be increased. The amount and length of tin whisker will increase with the increase of aging temperature and aging duration. However, the magnesium alloy will restrain the formation of Cu6Sn5 in solders.Tin whiskers graw rapidly during the initial stage of the aging duration at 150℃.When aging duration is over 400hr the growth rate of tin whiskers is slowndown.
中文摘要......................................i
英文摘要......................................ii
誌謝..........................................iii
目錄..........................................iv
表目錄........................................ix
圖目錄........................................xiv
第一章 前言...................................01
第二章 理論與文獻回顧.........................02
2.1傳統錫鉛銲錫之特性.........................02
2.2無鉛銲錫之發展.............................07
2.3無鉛銲錫之特性.............................09
2.4 Sn-Ag-Cu無鉛銲錫添加第四元素之研究........12
2.4.1 添加Ni元素之影響........................13
2.4.2 添加Bi元素之影響........................14
2.4.3 添加Sb元素之影響........................14
2.4.4 添加Zn元素之影響........................15
2.4.5 添加Mg元素之影響........................15
2.4.6 添加Ti元素之影響........................15
2.4.7 添加稀土元素之影響......................15
2.5 鎂元素特性及對銲錫性質之影響..............17
2.6 錫鬚成長理論..............................18
2.7 錫鬚之成長機構............................18
2.7.1 差排理論................................19 2.7.2 再結晶理論..............................19
2.7.3壓應力理論...............................20
2.7.4 氧化層理論..............................22
第三章 實驗步驟與方法.........................23
3.1 實驗材料..................................23
3.2 試驗項目..................................24
3.2.1熱分析試驗...............................24
3.2.2 XRD分析.................................24
3.2.3微硬度試驗...............................24
3.2.4時效試驗.................................24
3.3實驗流程...................................25
3.3.1填料合金配製.............................26
3.4錫鬚觀察...................................26
第四章 實驗結果與討論.........................27
4.1填料合金金相微結構.........................27
4.2填料合金DSC熱分析試驗......................29
4.3填料合金XRD分析結果........................30
4.4填料合金硬度分析...........................33
4.5填料合金Mapping分析........................36
4.5.1 Sn-3Ag-0.5Cu添加2.2wt%LAZ931鎂合金Mapping分析..........................................37
4.5.2 Sn-3Ag-0.5Cu添加2.5wt%LAZ931鎂合金Mapping分析..........................................38
4.5.3 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2wt%LAZ931鎂合金Mapping分析...................................38
4.5.4 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金Mapping分析...................................40
4.6 Sn-3Ag-0.5Cu添加2.2wt%LAZ931鎂合金在25℃、100℃、150℃持溫下經時效觀察錫鬚成長..........44
4.6.1 Sn-3Ag-0.5Cu添加2.2wt%LAZ931鎂合金在25℃下觀察錫鬚成長..................................46
4.6.2 Sn-3Ag-0.5Cu添加2.2wt%LAZ931鎂合金在100℃下觀察錫鬚成長................................46
4.6.3 Sn-3Ag-0.5Cu添加2.2wt%LAZ931鎂合金在150℃下觀察錫鬚成長................................48
4.7 Sn-3Ag-0.5Cu添加2.5wt%LAZ931鎂合金在25℃、100℃、150℃持溫下經時效觀察錫鬚成長..........48
4.7.1 Sn-3Ag-0.5Cu添加2.5wt%LAZ931鎂合金在25℃下觀察錫鬚成長..................................49
4.7.2 Sn-3Ag-0.5Cu添加2.5wt%LAZ931鎂合金在100℃下觀察錫鬚成長................................52
4.7.3 Sn-3Ag-0.5Cu添加2.5wt%LAZ931鎂合金在150℃下觀察錫鬚成長................................52
4.8 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2wt%LAZ931鎂合金在25℃、100℃、150℃持溫下經時效觀察錫鬚成長....54
4.8.1 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2wt%LAZ931鎂合金在25℃觀察錫鬚成長............................56
4.8.2 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2wt%LAZ931鎂合金在100℃下觀察錫鬚成長.........................58
4.8.3 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2wt%LAZ931鎂合金在150℃下觀察錫鬚成長.........................58
4.9 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金在25℃、100℃、150℃持溫下經時效觀察錫鬚成長....60
4.9.1 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金在25℃下觀察錫鬚成長..........................61
4.9.2 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金在100℃下觀察錫鬚成長.........................64
4.9.3 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金在150℃下觀察錫鬚成長.........................66
4.10 Sn-3Ag-0.5Cu及Sn-3Ag-0.5Cu(Ni,Ge)添加2.2、2.5 wt%LAZ931鎂合金在150℃下經200hr、400hr後XRD分析結果比較..................................68
4.10.1 Sn-3Ag-0.5Cu添加2.2 wt%LAZ931鎂合金在150℃時經200hr、400hr後XRD分析結果比較........74
4.10.2 Sn-3Ag-0.5Cu添加2.5 wt%LAZ931鎂合金在150℃時經200hr、400hr後XRD分析結果比較........75
4.10.3 Sn-3Ag-0.5Cu(Ni,Ge)添加2.2 wt%LAZ931鎂合金在150℃時經200hr、400hr後XRD分析結果比......76
4.10.4 Sn-3Ag-0.5Cu(Ni,Ge)添加2.5wt%LAZ931鎂合金在150℃時經200hr、400hr後XRD分析結果比較......77
第五章 結論...................................78
參考文獻......................................79
[1]R.J. Klein Wassink, “ Soldering in Electronic ” (Electrochemical publications,Ayr ), p. 83 ,1984.
[2]W.K. Choi, and H.M. Lee, “Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate”, J. Electron. Mater., 1999,Vol.28, p.1251.
[3]W.J. Tomlinson, and N.J. Bryan, “The strength of brass/Sn-Pb-Sb solder joints containing 0 to 10% Sb”, J. Mater. Sci., 1986 Vol. 21, p.103.
[4]H. Tanaka, M. Tanimoto, A. Matsuda, T. Uno, M. Kurihara, S. Shiga,“Pb-free surface-finishing on electronic components’ terminals for Pb-free soldering assembly“, J. Electron. Mater., 1999 ,Vol. 28, p. 1216.
[5]F.A. Mohamed, and T.G. Langdon, “Creep behaviour in the superplastic Pb-62% Sn eutectic”, Phil. Mag.,1975, Vol. 32, p.697.
[6]N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I.S. Kim, and K.Miyahara, “Effect of microalloying on the creep strength and microstructure of an eutectic Sn-Pb solder alloy”, J. Electron. Mater.1999,Vol. 28, p.1286.
[7]S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian,“Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, J. Electron. Mater.,1999,Vol. 28, p.1209.
[8]J.W. Morris, Jr., J. L. Freer Goldstein, and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solders”, JOM, July, 1993,p.25.
[9]C.S. Huang, J.G. Duh, Y.M. Chen, and J.H. Wang, “Effects of Ni thickness and reflow times on interfacial reactions between Ni/Cu under-bump metallization and eutectic Sn-Pb solder in flip-chip technology”, J. Electron. Mater., 2003, Vol. 32, p.89.
[10]H. Tanaka, M. Tanimoto, A. Matsuda, T. Uno, M. Kurihara, S. Shiga, “Pb-free surface-finishing on electronic componentsterminals fo Pb-free soldering assembly, J. Electron. Mater., 1999 ,Vol. 28, p. 1216.
[11]Hiroaki Okamoto, P. R. Subramanian, Linda Kacprzak, in ASM Handbook Binary Alloy Phloy Phase Diagrams (1992).
[12]J.W.Morris.Jr,J.L.Feer Goldstein,Z.Mei“Microstructure and Mechanical Properties of Sn-Bi Solder,July 1993 ,JOM,p.25-27.
[13]B.Trumble, “Get the Lead Out,IEEE Spectrum,May 1998,p.55-60.
[14]P.Zarrow, “Lead-Free:Don''t Fight a Fact,Deal with it!,Circuit Assembly,August1999,p.18-20.
[15]M. Hansen, K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York,1958.
[16]J. Glqzer, “Metallurgy of Law Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No.2,p.65-93.
[17]M.McCormack, I. Artaki, S. Jin, A. M.Jackson, D. M. Machusak, G. W.Kammlott, D. W. Finley, “Wave Soldering with a Low Melting Point Bi-Sn alloy: Effects of Soldering Temperature and Circuit Board Finishes”, J.Electron. Mater., 1996,Vol.25, No.7 pp.1128-1131.
[18]M. E. Loomas, S. Vaynman, G. Ghosh, M. E. Fine, “Investigation of Multi-component Lead-Free Solders”, J. Elctron. Mater., Vol23, No.8,p.741-746 1994.
[19]H. Mavoori, J.Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine,“Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders”, J. Electron. Mater.,1997 Vol. 26, p.783 .
[20]W.J. Plumbridge, “Review solders in electronics”, J. Mater. Sci.,1996 Vol.31, p.2501.
[21]J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review”, J. Electron. Mater. 1994, Vol. 23, p.693
[22]R.R. Tummala, “Fundamentals of MicrosystemsPackaging”, McGRAW-HILL,2000, Chap.18,p. 735-740 ,Chap. 21, pp. 860-865.
[23]H. Ohtani, I. Satoh, M. Miyashita, and K. Ishida, “Thermodynamic analysis of the Sn–Ag–Bi ternary phase diagram,” Mater. Trans., vol. 42, p.722, 2001.
[24]Z. Mozer, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X. J. Liu, Y. Inohana, and K. Ishida, “Studies of the Ag-In phase diagram and surface tension measurements,” J. Electron. Mater., vol. 30, p.1120, 2001.
[25]I. Ohnuma, X. J. Liu, K. Anzai, H. Ohtani, R. Kainuma, and K. Ishida, “Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys,” J. Electron. Mater., vol. 29, p.1137, 2000.
[26]H. Ohtani, M. Miyashita, and K. Ishida, “Thermodynamic assessment of the Sn–Ag–Zn ternary system,” J. Jpn. Inst. Met, vol. 63, p. 685, 1999.
[27]J. Y.Tasi, and C.R. Kao, 2002 Int’l Symposium on Electronic Materials and Packaging,p.271-275.
[28]Iver E. Anderson, Tamara E. Bloomer and James C.Foley, “Effects of Transition Metal Alloying on Microstructural Stability and Mechanical Properties of Tin-Silver-Copper Solder Alloys,”Proc. Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM 3) (The Minerals, Metals and Materials Society, 1998).
[29]Y.Kariya and M. Otsuka, J,Electron. Mater. 27, 866(1998).
[30]Rao Mahidhara, “A Primer on Lead-Free Solder, ”Chip Scale Review (March-April 2000).
[31]Y.Mutoh,J . Zhao, Y. Miyashita, C. Kanchanomai, Sold. Surf. Mount Technol.,14(2002),37.
[32]B. L.Chen and G, Y, Li, “Influence of Sb on IMC Growth Sn-Ag-Cu-Sb Pb-free Solder Joints I Reflow Process, Thin Solid Films, 462-463(2004) p.395-401.
[33]Grusd, “Connecting to Lead-Free Solders”, Circuits Assembly, (August 1999), p.32-38.
[34]柯懿原,“鎂合金與鋁合金活性軟銲接合研究”,國立雲林科技大學機械工程系 (2008).
[35]莊東漢、張世穎、曹龍泉,“軟銲填料特性研究”金屬工業研究發展中心。
[36]L. Wang, D. Q. Zhao, and M. L. Huang, “Improvement of Wettability and Tensile Properties in Sn-Ag-RE lead-Free Solder Alloy” , Materials Letters, 56(2002), p.1039-1042.
[37]X. Ma and F. Yoshida, “Interaction Relation in 60Sn-Pb-0.05La Ternary Solder Alloy” , Materials Letters, 56(2002), p.441-445.
[38]C. M. L. Wu, C.M.T. Law, D. Q. Yu, and L. Wang, “The Wettability and Microsructure of Sn-Zn-RE Alloys” , Journal of Electronic Materials,Vol. 32, No.2, 2003, p.63-74.
[39]李咸學,“添加鎂合金之軟銲填料應用於氧化鋁陶瓷金屬化及接合研究”,國立雲林科技大學機械工程系(2008)。
[40]K. G. Compton, A. Mendizza, and S. M. Arnold, “Filamentary growths on Metal surfaces—Whiskers, ” Corrosion, vol.7, no.10, p.327-334, Oct. 1951
[41]George T. Galyon, “Annotated Tin Whisker Bibliography and Anthology, ” IEEE Transactions on Electronics Packaging Manufacturing,Vol. 28, No. 1, p.94-122, January 2005.
[42]N. Furuta and K. Hamamura, “Growth mechanisms of proper tinWhisker, ” Jpn.J. App. Phys. , vol. 9, no. 12, p.1404-1410, Dec. 1969.

[43]M. O. Peach, “Mechanism of growth of whiskers on cadmium, ” J.Appl. Phys. , vol. 23, no. 12, p.1401-1403, 1952.
[44]J. D. Eshelby, “ A tentative theory of metallic whisker growth, ” Phys. Rev. , vol. 91 , p.755-756, 1953.
[45]S. Amelinckx, W. Bontinck, W. Dekeyser, and F. Seitz, “ On the formation and properties of helical dislocations, ” Phil. Mag.,ser.8,vol.2, no.15,p.355-377, Mar.1957.
[46]U. Lindborg, “Observations on the growth of whisker crystals from zinc electroplate, ” Metallurgical Trans. A, vol. 6A, pp. 1581-1586, Aug. 1975.
[47]B. Z. Lee and D. N. Lee, “Spontaneous growth mechanism of tin whiskers, ” Acta Metallurgica, vol. 46, no. 10, p.3701-3714, 1998.
[48]W. C. Ellis, D. F. Gibbons, and R. C. Treuting, “Growth of metal whiskers from the solid, ” in Growth and Perfectin of Crystals, R. H. Doremus,B. W. Roberts, and D. Turnbull, New York, NY:Wiley, 1958, p.102-120.
[49]George T. Galyon and L. Palmer, “An Integrated Theory of Whisker Formation: IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No.1,p.17, January 2005.
[50]Chen Xu, Yun Zhang, Chonglun Fan, and Joseph A. Abys , “Driving Force for the Formation of Sn Whiskers:Compressive Stress-Pathways for Its Generation and Remedies for Its Elimination and Minimization, “IEEE Transactions on Electronics Packaging Manufacturing, Vol.28, No. 1, p.31, January 2005.
[51]K. N. Tu, “ Interdiffusion and reaction in bimetallic Cu-Sn thin films, ”ActaMetallurgica, vol. 21, no.4, p.347-354, Apr. 1973.
[52]Wu C.M. Lawrence, Yu D.Q., Law C.M.T., Wang L., “The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements” , Journal of Electronic Materials, v 31,n9,September, 2002, p921-927.
[53]R. M. Fisher, L. S. Darken, and K. G. Carroll, “Accelerated growth of tin whiskers, ” Acta Metallurgica. , vol.2, no.3, p. 368-372, May 1954.
[54]Nick Vo, Mark Kwoka, and Peter Bush, “Tin Whisker Test Standardization, ” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, p.3-9,January 2005.
[55]S. H. Liu, Chih Chen, P. C. Liu and T. Chou, “Tin whisker growth driven by electrical currents” , J. Appl. Phys. , vol. 95, no. 12, p.7742-7747, June. 2002.
[56]G.T.T. Sheng,C.F.Hu,W.J.Choi,K.N.Tu,Y.Y. Bong,and L.Nguyen,“Tin whiskers P studied by focused ion beam imaging and transmission electron microscopy, ” J. Appl. hys.,vol.92, no.1, p.64-69, Jul. 2002.
[57]S. Lu and C. Wei, “Effect of Mg on the Microstructure and Properties of Sn-Ag-Cu Lead-free”, IEEE. 2005 6th International Conference on Electronic Packaging Technology.
[58]E. E. Vicente, S. Bermudez, A. Esteban, R.Tendler, B. Arcondo and H. Sirkin, “Invariant three-and four-phase equilibria in the magnesiu,-rich corner of the Mg-Cu-Sn ternary system”. Journal of Materials Science 26 pp.1327-1332 (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top