|
1.Crotty, S., Gerislioglu, S., Endres, K. J., Wesdemiotis, C., Schubert, U. S., Polymer architectures via mass spectrometry and hyphenated techniques: A review. Anal Chim Acta, 2016. 932: p. 1-21. 2.Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm, 2007. 65(3): p. 259-69. 3.S. Förster, M.A., Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. Advanced Materials, 1998. 10(3): p. 195-217. 4.Tanushree Chakraborty, Indranil Chakraborty, Soumen Ghosh, The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arabian Journal of Chemistry, 2011. 4(3): p. 265-270. 5.Friederike Schmid, Dominik Duchs, Olaf Lenz, Claire Loison, Amphiphiles at Interfaces: Simulation of Structure and Phase Behavior. NIC Series, 2004. 23: p. 323-346. 6.P. Alexandridis, B.L., Amphiphilic Block Copolymers: Self-Assembly and Applications. 2000. 7.K. Kataoka, A.H., Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced drug delivery reviews, 2001. 47: p. 113-131. 8.Shuai, X., Ai, H., Nasongkla, N., Kim, S., Gao, J., Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release, 2004. 98(3): p. 415-426. 9.Thambi, T., Deepagan, V.G., Yoo, Chang Kyoo, Park, Jae Hyung, Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer, 2011. 52(21): p. 4753-4759. 10.Matyjaszewski, K. and J. Spanswick, Controlled/living radical polymerization. Materials Today, 2005. 8(3): p. 26-33. 11.Tatemoto, M., Development of “Iodine Transfer Polymerization and Its Applications to Telechelically Reactive Polymers. KOBUNSHI RONBUNSHU, 1992. 49(10): p. 765-783. 12.A. Goto, Y.K., T. Fukuda, S. Yamago, K. Iida, M. Nakajima, J. Yoshida, Mechanism-Based Invention of High-Speed Living Radical Polymerization Using Organotellurium Compounds and Azo-Initiators. J. Am. Chem. Soc., 2003. 125(29): p. 8720–8721. 13.S. Yamago, B.R., K. Iida, J. Yoshida, T. Tada, K. Yoshizawa, Y. Kwak, A. Goto, T. Fukuda, Highly Versatile Organostibine Mediators for Living Radical Polymerization. J. Am. Chem. Soc., 2004. 126(43): p. 13908–13909. 14.Yamago, S., Kayahara, E., Kotani, M., Ray, B., Kwak, Y., Goto, A., Fukuda, T., Highly controlled living radical polymerization through dual activation of organobismuthines. Angew Chem Int Ed Engl, 2007. 46(8): p. 1304-1306. 15.Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012. 45(10): p. 4015-4039. 16.Wu, Wen-Chung, Chen, Ching-Yi, Tian, Yanqing, Jang, Sei-Hum, Hong, Yuning, Liu, Yang, Hu, Rongrong, Tang, Ben Zhong, Lee, Yi-Ting, Chen, Chin-Ti, Chen, Wen-Chang, Jen, Alex K. Y., Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. Advanced Functional Materials, 2010. 20(9): p. 1413-1423. 17.Fukuda, K., Enomoto, R., Ishihara, K., Morishima, Y., Yusa, Shin-ichi, Thermo-Responsive and Biocompatible Diblock Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization. Polymers, 2014. 6(3): p. 846-859. 18.Schumers, J.M., C.A. Fustin, and J.F. Gohy, Light-responsive block copolymers. Macromol Rapid Commun, 2010. 31(18): p. 1588-1607. 19.Keller, S., Wilson, J.T., Patilea, G.I., Kern, H.B., Convertine, A. J., Stayton, P. S., Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release, 2014. 191: p. 24-33. 20.Gil, E. and S. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222. 21.Bawa, P., Pillay, V., Choonara, Y.E., du Toit, L.C., Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater, 2009. 4(2): p. 1-15. 22.Clark, E.A. and J.E.G. Lipson, LCST and UCST behavior in polymer solutions and blends. Polymer, 2012. 53(2): p. 536-545. 23.Sun, Yi-Ming, Huang, Tung-Ling, Pervaporation of ethanol-water mixtures through temperature-sensitive poly(vinyl alcohol-g-N-isopropyacrylamide) membranes. Journal of Membrane Science, 1996. 110: p. 211-218. 24.Christine Weber, Richard Hoogenboom, Ulrich S. Schubert, Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Progress in Polymer Science, 2012. 37(5): p. 686-714. 25.Liu, R., M. Fraylich, and B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications. Colloid and Polymer Science, 2009. 287(6): p. 627-643. 26.Schild, H., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17: p. 163-249. 27.A. Laukkanen, L.V., F.M. Winnik, H. Tenhu, Formation of Colloidally Stable Phase Separated Poly(N-vinylcaprolactam) in Water: A Study by Dynamic Light Scattering, Microcalorimetry, and Pressure Perturbation Calorimetry. Macromolecules, 2004. 37(6): p. 2268-2274. 28.S. Liu, S.P.A., The Facile One-Pot Synthesis of Shell Cross-Linked Micelles in Aqueous Solution at High Solids. J. Am. Chem. Soc., 2001. 123(40): p. 9910–9911. 29.J. Persson, H.O.J., I. Galaev, B. Mattiasson, F. Tjerneld, Aqueous polymer two-phase systems formed by new thermoseparating polymers. Bioseparation, 2000. 9(2): p. 105-116. 30.I. Idziak, D.A., D. Lessard, D. Gravel, X.X. Zhu, Thermosensitivity of Aqueous Solutions of Poly(N,N-diethylacrylamide). Macromolecules, 1999. 32(4): p. 1260–1263. 31.Soon Hong Yuk, Sun Hang Cho, Sang Hoon Lee, pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules, 1997. 30(22): p. 6856–6859. 32.Zheng, Siqi, Shi, Shuxian, Xia, Yuzheng, Wu, Qijiayu, Su, Zhiqiang, Chen, Xiaonong, Study on micellization of poly(N-isopropylacrylamide-butyl acrylate) macromonomers in aqueous solution. Journal of Applied Polymer Science, 2010. 118: p. 671-677. 33.J. F. o. Gohy, B.G.G.L., S. K. Varshney, B. Decamps, E. Leroy, S. Boileau, U. S. Schubert, Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules, 2002. 35: p. 9748-9755. 34.Yang, Liu, Wu, Xiaohan, Liu, Feng, Duan, Yourong, Li, Suming, Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res, 2009. 26(10): p. 2332-2342. 35.Ai, Xiaoyu, Zhong, Lu, Niu, Handong, He, Zhonggui, Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian Journal of Pharmaceutical Sciences, 2014. 9(5): p. 244-250. 36.Chang, L.L., Liu, J.J., Zhang, J.H., Deng, L.D., Dong, Anjie, pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly(methacrylic acid)) for oral drug delivery. Polym. Chem., 2013. 4(5): p. 1430-1438. 37.Gou, J., Feng, S., Xu, H., Fang, G., Chao, Y., Zhang, Y., Xu, H., Tang, X., Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances. Biomacromolecules, 2015. 16(9): p. 2920-2929. 38.J.B Liu, Y.H.X., C. Allen, Polymer–Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004. 93(1): p. 132-143. 39.Li, H., Li, J., Ke, W., Ge, Z., A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction. Macromol Rapid Commun, 2015. 36(20): p. 1841-1849. 40.Liang, Y., Deng, X., Zhang, L., Peng, X., Gao, W., Cao, J., Gu, Z., He, B., Terminal modification of polymeric micelles with pi-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015. 71: p. 1-10. 41.Panja, S., Maji, S., Maiti, T. K., Chattopadhyay, S., A branched polymer as a pH responsive nanocarrier: Synthesis, characterization and targeted delivery. Polymer, 2015. 61: p. 75-86. 42.Zhang, Canyang, Wu, Wensheng, Yao, Na, Zhao, Bin, Zhang, Lijuan, pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv., 2014. 4(76): p. 40232-40240. 43.Sant, V.P., D. Smith, and J.C. Leroux, Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release, 2004. 97(2): p. 301-312. 44.Nishiyama, N. and K. Kataoka, Nanostructured Devices Based on Block Copolymer Assemblies for Drug Delivery: Designing Structures for Enhanced Drug Function. 2006. 193: p. 67-101. 45.Madhulika Pradhan, D.S., Manju Rawat Singh, Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. Journal of Controlled Release, 2013. 170(3): p. 380-395. 46.Zhang, Tianpeng, Wang, Huan, Ye, Yanghuan, Zhang, Xingwang, Wu, Baojian, Micellar emulsions composed of mPEG -PCL /MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles. International Journal of Nanomedicine, 2015. 10: p. 6175–6184. 47.de Oliveira, Anderson M., Jäger, Eliézer, Jäger, Alessandro, Stepánek, Petr, Giacomelli, Fernando C., Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 436: p. 1092-1102. 48.Cheng, Y., Hao, J., Lee, L. A., Biewer, M. C., Wang, Q., Stefan, M. C., Thermally controlled release of anticancer drug from self-assembled gamma-substituted amphiphilic poly(epsilon-caprolactone) micellar nanoparticles. Biomacromolecules, 2012. 13(7): p. 2163-2173. 49.Ma, Yingying, Zhang, Guangyan, Li, Lingjuan, Yu, Huan, Liu, Jia, Wang, Chaoqun, Chu, Yanfeng, Zhuo, Renxi, Jiang, Xulin, Temperature and pH dual-sensitive polyaspartamide derivatives for antitumor drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(7): p. 879-888. 50.Walle, M.V.D., Synthesis of block copolymers by TAD-chemistry and study of their self-assembly behaviour. 2016: p. 1-73. 51.Phillip Greenspan, Stanley D. Fowler, Spectrofluorometric studies of the lipid probe, nile red. The Journal of Lipid Research, 1985. 26(7): p. 781-789. 52.Zhou, Weisai, Li, Caibin, Wnag, Zhiyu, Zhang, Wenli, Liu, Jianping, Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. Journal of Nanoparticle Research, 2016: p. 1-18. 53.Bockisch, M., Fats and Oils Handbook. 71. 54.Timms, R.E., Heats of fusion of glycerides. Chemistry and Physics of Lipids, 1978. 21(1-2): p. 113-129. 55.Samy A. Madbouly, Liu, Kunwei, Xia, Ying, Michael R. Kessler, Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 2014. 4: p. 6710-6718.
|