跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許峰碩
研究生(外文):Feng-Shuo Hsu
論文名稱:膠態電解質鋰離子電池負極的研究
論文名稱(外文):The Study of Anode Electrode in Gel-Type Electrolyte Li-ion Battery
指導教授:斯頌平
口試委員:林中一
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:
外文關鍵詞:no
相關次數:
  • 被引用被引用:4
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究以 MCMB 為負極,鋰金屬為正極的膠態電解質電池的充放電性能,並利用交流阻抗分析鋰離子於電池內部的傳導性質。當電池使用液態電解質時,充放電的電容量可達 310mAh/g,而使用膠態電解質時在較高速率充放電速率下電容量衰退剩下約 235mAh/g。於膠態電解質中添加 α-Al2O3 能有效的增加充放電容量,並可增加電池循環的穩定性。經由交流阻抗分析發現添加 α-Al2O3 可降低固態電解質界面的阻抗,並降低電荷轉移電阻。


The charge-discharge characteristics of the gel-type electrolyte batteries, which use MCMB as anode, Lithium metal as cathode, were studied. AC impedance analyzer was also used to explore the transport of the lithium ion in the battery. The specific capacity of battery for liquid
electrolyte is found to be 310mAh/g. Under the fast charge-discharge condition, the specific capacity of battery decreases to 235mAh/g when gel-type electrolyte is used. The specific capacity and the charge-discharge performance of battery can be enhanced effectively by adding nano-sized 2O3 particles. The results of AC impedance indicate that the impedance of Solid Electrolyte Interphase (SEI) films and the charge transfer resistances are reduced when 2O3 particles
are added.


致謝……………………………………………………………….…….i

摘要………………………………………………………………...…….ii

Abstract………………………………………………………………….iii

目錄………………………………………………………….………….iv

圖表索引………………………………………………….…………….vi

第一章 緒論
1-1 前言………………………………………………………1
1-2 鋰離子電池簡介及工作原理……………………………2
1-3 鋰離子電池正負極材料介紹……………………………3
1-4 鋰離子電池電解質介紹………………………………..10
1-5 高分子聚合物介紹………………………………..……13
1-6 文獻回顧…………………….………………………….14
1-7 研究目的……………………………………………..…15

第二章 研究方法
2-1 負極電極片製備……………………………………….16
2-2 膠態高分子電解質調配…………………………….…17
2-3 實驗藥品及儀器……………………………………….18
2-4 量測配置……………………………………………….19
2-4-1 鈕扣型電池組裝…………………………………...19
2-4-2 量測參數設定……………………………...……....19
2-5 量測儀器原理簡介……………………………………….21
2-5-1 循環伏安法(CV)………………………………...21
2-5-2 定電流充電法……………………………………...22
2-5-3 交流阻抗分析……………………………………...22
2-5-4 鋰離子電池等效電路模型………………………...29

第三章 結果與討論
3-1 Li-MCMB 半電池分析………………………………....32
3-2 充放電測試分析………………………………...………33
3-3 交流阻抗分析…………………………………………...47

第四章 結論……………………………………………………………55

參考文獻……………………………………………………………..…56


[1] J. R. Dahn, E.W. Fuller, M. Obrovac, U. V. Sacken, Solid State Ionics 69 (1994) 265.

[2] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 148 (2002) 283.

[3] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Electroche. Soc.144 (1994) 4.

[4] S. S. Zhang, K. Xu, T. R. Jow, Electrochim. Acta 51 (2006) 1636.

[5] K. A. Hirasawa, T. Sato, H. Asahina, S. Yamaguchi, S. Mori, J. Electrochem. Soc. 144 (1997) L81.

[6] D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Einigrad, B. Markovsky, J. Electrochem. Soc. 142 (1995) 2873.

[7] C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, J. Power Sources 81 (1999) 925.

[8] E. Paled, J. Electrochem. Soc. 126 (1979) 2047.

[9] D. Billaud, F. X. Herry, P. Willman, Mater. Res. Bull. 28 (1993) 477.

[10] T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 151 (2004) 1120.

[11] J. Yao, G. X. Wang, J. H. Ahn, H. K. Liu, S. X. Dou, J. Power Sources 114 (2003) 292.

[12] S. Wang, W. Zhao, Y. Wang, X. Liu, L. Li, Electrochim. Acta 109 (2013) 46.

[13] Y. J. Kim, H. Lee, H. J. Sohn, Electrochem. Commu. 11 (2009) 2125.

[14] T. S. Ong, H. Yang, Electrochem. Soc. 149 (2002) 1.

[15] K. Zaghib, F. Brochu, A. Guerfi, K. Kinoshita, J. Power Sources 103 (2001) 140.

[16] K. Fukuda, K. Kikuya, K. Isono, M. Yoshio, J. Power Sources 69 (1997) 165.

[17] M. Herstedt, L. Fransson, K. Edstrom, J. Power Sources 124 (2003) 191.

[18] K. Sawai, T. Ohzuku, J. Electrochem. Soc. 150 (2003) 674.

[19] Q. Wang, H. Li, L. Q. Chen, X. J. Huang, Solid State Ionics 152 (2002) 43.

[20] F. B. Dias, L. Plomp, J. B. J. Veldhuis, J. Power Sources 88 (2000) 169.

[21] A. M. Stephan, Eur. Polym. J. 42 (2006) 21.

[22] S. S. Zhang, J. Power Sources 164 (2007) 351.

[23] Z. Lu1, L. Yang, Y. Guo, J. Power Sources 156 (2006) 555.

[24] T. Nakajima, M. Mori, V. Gupta, Y. Ohzawa, H. Iwata, Solid State Sci. 4 (2002) 1385.

[25] S. W. Song, T. J. Richardson, G. V. Zhuang, T. M. Devine, J. W. Evans, Electrochim. Acta 49 (2004) 1483.

[26] S. S. Zhang, K. Xu, T. R. Jow, The Electrochem. Soc. 149 (2002) 586.

[27] Y.W. Chen-Yang, H. C. Chen, F. J. Lin, C. C. Chen, Solid State Ionics 150 (2002) 327.

[28] J. J. Hwang, H. H. Peng, J. M. Yeh, J. Appl. Polym. Sci. 120 (2011) 2041 .

[29] C. R. Yang, J. T. Perng, Y. Y. Wang , C. C. Wan, J. Power Sources 62 (1996) 89.

[30] A. S. Best, A. Ferry, D..R. MacFarlane , M. Forsyth, Solid State Ionics 126 (1999) 269.

[31] F. Croce, G. B. Appetecchi, L. Persi , B. Scrosati, Nature 394 (1998) 30.

[32] S. Ahmad, S.Ahmad, S. A. Agnihotry, J. Power Sources 140 (2005) 151.

[33] S. Ahmad, T. K. Saxena, S. Ahmad, S. A. Agnihotry, J. Power Sources 159 (2006) 205.

[34] J. E. Weston, B. C. H. Steele, Solid State lonics 7 (1982) 75.

[35] S. Ahmad, S. A. Agnihotry, Curr. Appl. Phys. 9 (2009) 108.

[36] S. Flandrois , B. Simon, Carbon 37 (1999) 165.

[37] C. Wang, A. J. Appleby , F. E. Little, Electrochim. Acta 46 (2001) 1793.

[38] S. Zhang, P. Shi, Electrochim. Acta 49 (2004) 1475.

[39] S. Yang, H. Song , X. Chen, Electrochem. Commu. 8 (2006) 137.

[40] X. Cao, J. H. Kim, S. M. Oh, Electrochim. Acta 47 (2002) 4085.

[41] J. Xie, G. S. Cao, X. B. Zhao, Mater. Chem. Phys. 88 (2004) 295.

[42] M. J. Deng, D. C. Tsai, W. H. Ho, C. F. Li, F. S. Shieu, Appl. Surface Sci. 285 (2013) 180.

[43] G. X. Wang, J. Yao, H. K. Liu, S. X. Dou, J. H. Ahn, Electrochim. Acta 50 (2004) 517.

[44] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 148 (2002) 283.

[45] D. R. Franceschetti, J. R. Macdonald, J. Electrochem. Soc. 129 (1982) 1754.

[46] D. Aurbach, J. Power Sources 89 (2000) 206.

[47] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 148 (2002) 405.

[48] P. Verma, P. Maire1, P. Novak, Electrochim. Acta 55 (2010) 6332.

[49] A. Funabiki , M. Inaba, Z. Ogumi, J. Power Sources 68 ( 1997 ) 227.

[50] A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J of Electrochem. Soc. 149 (2002) 1358.

[51] F. Coowar, A. M. Christie, P. G. Bruce, C. A. Vincent, J. Power Sources 75 (1998) 144.

[52] P. Liu, H. Wu, J. Power Sources, 56 (1995) 81.

[53] N. Imanishi , Y. Ono, K. Hanai, R. Uchiyama, Y. Liu, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 178 (2008) 744.

[54] H. Zheng, L. Chaia, X. Songb, V. Battaglia, Electrochim. Acta 62 (2012) 256.

[55] R. Yuge, N. Tamura, T. Manako, K. Nakano, K. Nakahara, J. Power Sources 266 (2014) 471.

[56] L. Yang, G. Liang, L. Wang, X. Zhi, X. Ou, J. Alloy.Compd. 496 (2010) 376.

[57] J. F. Rios, J. A. Calderón, R. P. Nogueira, J. Braz. Chem. Soc. 22 (2011) 1362

[58] C. Wan, Y. Nuli, J. Zhuang, Z. Jiang, Mater. Lett. 56 (2002) 357.

[59] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, P. R Bueno J. Electroanal. Chem. 475 (1999) 152.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top