跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡彰胤
研究生(外文):Chang-Yin Chien
論文名稱:化學氣相沈積法披覆陶瓷分離膜及其物性檢測
論文名稱(外文):Ceramic Membrane Modified via Chemical Vapor Deposition and its Characterization
指導教授:吳紀聖
指導教授(外文):Jeffrey Chi-Sheng Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:87
中文關鍵詞:化學氣相沈積法(CVD)Knudsen diffusionHe/N2的選擇率TEOS
外文關鍵詞:chemical vapor deposition (CVD)Knudsen diffusionHe/N2 selectivityTEOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究的目標是以TEOS利用化學氣相沈積法(CVD)將中山科學研究院四所提供之超微過濾多孔性氧化鋁濾管披覆一層SiO2縮小孔徑至2nm以下,提高氣體的選擇率,增加氧化鋁圓管的應用價值。
實驗的工作包括CVD系統的組裝、氧化鋁管空管的滲透率量測、化學氣相沈積反應、CVD後氣體的滲透率和選擇率測量,及CVD後氧化鋁管的物性檢測。中科院共提供0.02μm和0.006μm兩種孔徑的管子。0.02μm空管氣體滲透率,He約50-90 ,N2約30-60 。而0.006μm空管氣體滲透率則He約20- 50 ,對N2約10-30 。經由CVD後,氧化鋁圓管的氣體滲透率均下降,而對於He/N2的選擇率,沈積效果結果較好的0.006μm 氧化鋁圓管可以從CVD前的1.96升高到CVD後的17左右。根據Knudsen diffusion的原理,H2/N2的估計值為24.4,超過Knudsen diffusion分離效率的5倍以上。最後從氧化鋁圓管的表面物性分析,由SEM也確實看到沈積於氧化鋁管上的SiO2,及N2吸(脫)附孔徑分析測到分佈在2nm左右的孔徑。另外,由EDX及ESCA亦作了氧化鋁圓管在CVD前後的Al2O3與SiO2定性、定量分析。
The objective of this study is to reduce pore size of tubular alumina membrane under 2nm using TEOS via chemical vapor deposition (CVD) route. Consequently, we can promote the applications and increase the value of tubular alumina membrane from Chung-Shan Institute of Science and Technology (CSIST).
The system assembly、gas permeability、CVD reaction, and character -rization of SiO2 membrane are included in this work. Tubular alumina membranes from CSIST consist of two kind of pore sizes, 0.02μm and 0.006μm. The permeabilities of pore size 0.02μm clean membrane is 50-90 for He, and 30-60 for N2. As to clean membrane of pore size 0.006μm, He and N2 permeabilities are 20-50 and 10-30 respectively. After modified by CVD, the permeability of all tube membrane decreases with deposition time. The He/N2 selectivity of 0.006μm clean membrane can be enhanced to 17, compared with 1.96 before CVD. Based on Knudsen diffusion, H2/N2 selectivity may achieve up to 24.4. The thickness and microstructure of SiO2 layer are observed by scanning electron microscopy (SEM). Nitrogen adsorption and mercury intrusion estimated the pore size distribution and porosity. Chemical state and quantity analysis of SiO2 and Al2O3 was recognized through XPS and EDX.
摘要
目錄 Ⅰ
表目錄 Ⅴ
圖目錄 Ⅵ
第一章、緒論 1
第二章、文獻回顧 4
2-1薄膜的種類 4
2-1-1材質 5
2-1-2型態 6
2-1-3結構 8
2-2薄膜的製備方法 9
2-2-1化學氣相沈積法(CVD) 10
2-3氣體的薄膜分離機制 15
2-3-1多孔無機膜的分離機制 15
2-3-2 緻密無機膜的分離機制 17
第三章、實驗內容 18
3-1 反應基本原理 20
3-2 藥品與載體材料 21
3-3實驗設備 22
3-4實驗步驟 28
3-4-1實驗流程 28
3-4-2掃瞄式電子顯微鏡(SEM) 30
3-4-3比表面積測定(BET)及氮氣脫附孔徑測定 31
3-4-4汞壓法(Hg intrusion) 33
3-4-5能量分散式光譜儀(EDX) 33
3-4-6化學分析電子能譜儀分析(ESCA;XPS) 34
第四章、實驗結果 36
4-1滲透率測試 36
4-1-1第一批0.02μm多孔陶瓷管 37
4-1-2第二批0.02μm和0.006μm多孔陶瓷管 39
4-1-3第三批0.02μm和0.006μm多孔陶瓷管 41
4-1-4第四批0.006μm多孔陶瓷管 43
4-2化學氣相沈積結果 45
4-2-1第一批0.02μm多孔陶瓷管 45
4-2-2第二批0.02μm和0.006μm多孔陶瓷管 46
4-2-3第三批0.02μm和0.006μm多孔陶瓷管 47
4-2-4第四批0.006μm多孔陶瓷管 50
4-3 汞壓法測定載體孔徑分佈 52
4-4 氮氣吸(脫)附測定孔徑分佈 53
4-5 SEM分析 55
4-6 EDX分析 61
4-7 XPS分析 63
第五章、討論 65
5-1滲透率測試 65
5-1-1氧化鋁圓管的end seals 65
5-1-2 Knudsen diffusion and hindrance diffusion 67
5-1-3 Capillary condensation and surface diffusion 68
5-2化學氣相沈積 69
5-2-1 CVD操作條件 69
5-2-2回流現象 72
5-2-3模組密封、拆卸 73
5-2-4剝離與碎裂現象 74
5-3氧化鋁圓管的物性檢測 76
5-3-1汞壓法測定載體孔徑分佈 76
5-3-2氮氣吸(脫)附測定孔徑分佈 76
5-3-3 SEM分析 77
5-3-4 EDX分析 78
5-3-5 XPS分析 79
第六章、結論 80
參考文獻 81
表目錄
頁數
表2-1:各種模組的比較 8
表2-2:各種先驅物的優缺點 12
表2-3:各種先驅物成膜的化學反應 12
表2-4:製備氫氣分離膜的文獻整理 13
表2-5:(CVD+TEOS)製備薄膜文獻整理 14
表4-1:各批多孔陶瓷圓管結果數據 36
表4-2:沒有end seals的0.02μm空管滲透率結果數據 38
表4-3-9/22第三批0.006μm CVD前滲透率結果數據 42
表4-4:第二批多孔陶瓷管的滲透率與CVD結果小整理 46
表4-5:第三批多孔陶瓷管的滲透率與CVD結果小整理 47
表4-6:9/22第三批0.006μm CVD後滲透率結果數據 48
圖目錄
頁數
圖2-1:薄膜模組類型 7
圖2-2:反應物進行反應的型式 11
圖3-1:CVD系統裝置 23
圖3-2:TEOS平衡蒸氣壓與溫度的關係 24
圖3-3:不銹鋼模組尺寸、設計 26
圖3-4:不銹鋼模組加工後成品 27
圖3-5:接上shell side不銹鋼管成品 27
圖3-6: CVD流程圖 29
圖4-1:有end seals的0.02μm空管Air滲透率結果 37
圖4-2:有end seals與沒有end seals 0.02μm的滲透率比較 38
圖4-3:8/29第二批0.02μm空管滲透率結果 39
圖4-4:第二批較低滲透率0.006μm空管滲透率結果 40
圖4-5:第二批較高滲透率0.006μm空管滲透率結果 40
圖4-6:10/5第三批0.02μm空管滲透率結果數據 41
圖4-7:第四批0.006μm空管滲透率結果(1) 43
圖4-8:第四批0.006μm空管選擇率結果 44
圖4-9:第四批0.006μm空管滲透率結果(2) 44
圖4-10:第一批0.02μm氧化鋁管Air滲透率與沉積時間的關係 45
圖4-11:第三批0.006μm CVD後氣體滲透率與CVD時間關係 49
圖4-12:He/N2 selectivity 與時間的關係 49
圖4-13:第四批0.006μm CVD後滲透率與溫度關係 51
圖4-14:第四批0.006μm CVD後選擇率與溫度的關係 51
圖4-15:第三批0.02μm氧化鋁管載體孔徑分佈 52
圖4-16:第三批0.006μm氧化鋁管載體孔徑分佈 52
圖4-17:0.006μm 氧化鋁圓管CVD前孔徑分佈 53
圖4-18:第三批0.02μm 氧化鋁圓管CVD後孔徑分佈 53
圖4-19:9/22第三批0.006μm 氧化鋁圓管CVD後孔徑分佈 54
圖4-20:第三批0.006μm氧化鋁圓管CVD前截面 54
圖4-21:第三批0.006μm氧化鋁圓管CVD後截面 56
圖4-22:第三批0.006μm氧化鋁圓管end seals截面 56
圖4-23:第四批0.006μm氧化鋁圓管CVD前截面 57
圖4-24:第四批0.006μm氧化鋁圓管CVD前正面 58
圖4-25:第四批0.006μm氧化鋁圓管CVD後截面 59
圖4-26:第四批0.006μm氧化鋁圓管CVD後正面 59
圖4-27:CVD後表面沈積結果 60
圖4-28:CVD前EDX分析 61
圖4-29:CVD後EDX分析 62
圖4-30:Al-XPS圖譜 63
圖4-31:Si-XPS圖譜 63
圖4-32:C-XPS圖譜 64
圖4-33:O-XPS圖譜 64
圖5-1:無氣泡孔洞的end seals 66
圖5-2:CVD溫度對滲透率與選擇率的影響 71
圖5-3:氧化膜圓管剝離現象 74
圖5-4:氧化鋁膜碎裂現象 75
1.J.Gillot,〝The developing use of inorganic membranes: A
historical perspective〞,in R.R. Bhave(Editor),
Inorganic Membrane, Synthesis, Characterization and
Application ,Van Nostrand Reinhold New York,1991,pp.1-9
2.陳東煌,黃定加,薄膜反應器,化工-第44卷 第4期 (1997) p.75
3.黃定加,陳慧英,陶瓷薄膜,化工-第40卷 第3期 (1993) p.101
4.朱一民,薄膜反應器在生化與食品程序上之應用,化工技術第七卷第十
一期(1999年11月號) p.211
5.丁進國,微孔陶瓷薄膜在液相系統分離之應用研究-油/水乳化液的
分離,台大化工所碩士論文,中華民國八十七年六月
6.Marcel Mulder, Basic Principles Of Membrane Technology
7.S. Kim, G.R. G.R. Gavalas, Preparation of H2 permselective
silica membranes by alternating reactant vapor deposition,
Ind. Eng. Chem. Res.34 (1995) 168
8.S. Kitao, M. Asaeda, Gas separation performance of thin
porous silica membrane prepared by sol-gel and CVD methods,
Key Eng. Mater.61 (6) (1991) 267.
9.S. Kitao, H. Kameda, M. Asaeda, Gas separation by thin porous
silica membrane of ultra fine pores at high temperature,
Membrane 15 (4) (1990) 222.
10.R.A. Levy, C. Ravindranath, L.N. Krasnoperov, J. Opyrchal,
E.S. Ramos, Porous Vycor membranes modified by chemical
vapor deposition of boron nitride for gas separation, J.
Electrochem. Soc.144 (1997) 349.
11.S.Morooka, S.S. Kim, S. Yan, K. Kusukabe, M. Watanabe,
Separation of hydrogen from a H2-H2O-HBr system with a SiO2
membrane formed in macropores of an alumina support tube,
Int. J. Hydrogen Energy 21 (1996) 183.
12.G.R. Gavalas, C.E. Megris, S.W. Nam, Deposition of H2-
permselectie SiO2 films, Chem. Eng. Sci 44 (1989) 1829
13.H.Y. Ha, S.W. Nam, S.-A. Hong, W.K. Lee, Chemical vapor
deposition of hedrogen-permselective silica films on porous
glass support from tetraethylorthosilicate, J. Membr. Sci.85
(1993) 279.
14.T. Ioannides, S.E. Verykios, Densification of a dense silica
membrane reactor in the reactions of dry reforming and
partial oxidaion of membrane, Catal. Lett. 36 (1996) 165.
15.B.-K. Sea. M. Watanabe, K. Kusakabe, S. Morooka, S.-S. Kim,
Formation of hydrogen permselective silica membrane for
elevated temperature hydrogen recovery from a mixture
containing steam, Gas Sep. Purif. 10 (1996) 187
16.M. Tsapatsis, G. Gavalas, Structure and aging
characteristics of H2-permselective SiO2-Vycor membranes, J.
Membr. Sci. 87 (1994) 281.
17.S. Jiang. Y. Yan, G.R. Gavalas, Temporary carbon barriers in
the preparation of H2-permselective silica membranes, J.
Membr. Sci. 103 (1995) 211.
18.S.W. Nam, G.R. Gavalas, Stability of H2-permselective SiO2
films formed by chemical vapor deposition, AIChE Symp. Ser.
85 (268) (1989) 68.
19.H. Ohya, S. Sato, A. Ishii, Y. Negishi, K. Matsumoto, The
separation of gaseous mixtures with composite micropore
glass membranes at high temperatures, Int. J. Hydrogen
Energy 18 (1993) 475.
20.T. Okubo, H. Inoue, Introduction of specific gas selectivity
to porous glass membranes by treatment with
tetraethoxisilane, J. Membrane Sci.42 (1989) 109
21.T. Okubo, H. Inoue, Single gas permeation through porous
glass modified with tetraethoxysilane, AIChE J. 35 (1989)
845.
22.M. Tsapatsis, S. Kim, S.W. Nam, G. Gavalas, Synthesis of
hydrogen permselective SiO2, TiO2, Al2O3, and B2O3 membranes
from the chloride precursors, Ind. Eng. Chem. Res. 30 (1991)
2152.
23.G. Meunier, J.P. Manaud, Thin film permeation membranes for
hydrogen purification, Int. J. Hydrogen Energy 17 (1992) 599.
24.S. Uemiya, Y. Kude, K. Sugino, T. Matsuda, E. Kikuchi, A
palladium/porous-glass composite membrane for hydrogen
separation, Chem. Lett. (1988) 1687.
25.S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, E.
Kikuchi, Separation of hydrogen through palladium thin film
supported on a porous glass tube, J. Membr. Sci. 56 (1991)
303.
26.J.C.S. Wu, H. Sabol, G.W. Smith, D.L. Flowers, P.K.T. Liu,
Characterization of hydrogen-permselective microporous
cermamic membranes, J. Membr. Sci. 96 (1994) 275.
27.S. Yan, H. Maseda, K. Kusakabe, S. Morooka, Hydrogen -
permselective SiO2 membrane formed in pores of alumina
support tube by chemical vapor deposition with
tetraethylorthosilicate, Ind. Eng. Chem.Res.33 (1994) 2096.
28.S. Morooka, S. Yan, K. Kusakabe, Y. Akiyama, Formation of
hydrogen–permselective membrane in macropores of α-alumina
support by thermal decomposition of TEOS. J. Membr. Sci. 101
(1995) 89.
29.R.S.A. de Lange, J.H.A. Hekkink, K. Kiezer, A. J. Burggraaf,
Permeation and separation studies on microporous sol-gel
modified ceramic membranes, Microporous Mater. 4 (1996) 169.
30.R.S.A. de Lange, J.H.A. Hekkink, K. Kiezer, A. J. Burggraaf,
Microporous sol-gel modified membranes for hydrogen
separation, Key Eng. Mater. 61/62 (1991) 77.
31.R.M. de Vos, H. Verweij, High-selectivity, high-flux silica
membranes for gas separation, Science 279 (1998) 1710.
32.A.K. Prabhu, S.T. Oyama, Highly Hydrogen Selective Ceramic
Membranes: application to the transformation of greenhouse
gases, Journal of Membrane Science 176 (2000) 233-248
33.C.L. Lin J., K.L. Flowers and P.K.T. Liu, Characterization
of ceramic membranes Ⅱ.Modified commercial membranes with
pore size under 40Å, J. Membr. Sci.92 (1994) 45-58
34.Paul K. T. Liu, Jeffrey C. Wu, Method for Forming Metal-
Oxide-Modified Porous Ceramic Membranes, U.S. patent
5,415,891 (1995)
35.D.M. Ruthven, Principles of Adsorption and Adsorption
Processes, John Wiley & Sons, New York, 1984,pp137
36.A. Kaiser and H. Schmidt, Generation of SiO2-Membrane From
Alkoxysilanes on Porous Supports, Journal of Non -
Crystalline Solids, vol. 63, p.261 (1984).
37.M. Niwa, S. Kato, T. Hattori and Y. Murakami, Fine Control
of The Pore-opening Size of The Zeolite Mordenite by
Chemical Vapour Deposition of Silicon Alkoxide, J. Chem.
Soc. Faraday Trans. I, vol. 80, p. 3135 (1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top