|
[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318,162(1985). [2] W. Krätschmer, Lowell D. Lamb, K. Fostiropoulos, Donald R. Huffman, Solid C60: a new form of carbon, Nature 347, 354-358 (1990). [3] Sumio Iijima, Helical microtubules of graphitic carbon, Nature,354 (1991). [4] R.T.K. Baker, M. A. Braber, P. S. Feates, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis,26,51(1972). [5] R.T.K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives, Journal of Catalysis,64,464(1980). [6] A. Oberlin, M. Endo, T. Koyama, Journal of crystal Growth,32,335(1976). [7] M.J. Yacaman, M.M. Yoshida, Rendon, J.G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied. Physics. Letters.62,202(1993). [8] C. Journet, P. Bernier, Production of carbon nanotubes , Applied Physics A 67, 1(1998). [9] Shin H, Yi JH, Baek JG, Choi M, Preparation and characterization of SiO2-B2O3-P2O5 particles and films generated by flame hydrolysis deposition for planar light-wave circuits, JOURNAL OF MATERIALS RESEARCH 17 (2): 315-322 2002. [10] W.A.de Heer, A. Cha. Telain, D. Ugarte, A Carbon Nanotube Field-Emission Electron Source , Science 270,1179(1995). [11] J.L. Kwo, Meiso Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, electron emitters, Diamond & Related Materials,9,1270(2000). [12] Burden AP, Materials for field emission displays, INTERNATIONAL MATERIALS REVIEWS 46 (5): 213(2001). [13] Hafner JM, Cheung CL, Lieber CM, Growth of nanotubes for probe microscopy tips , Nature,398:761(1999). [14] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg et al. Thermal properties of carbon nanotubes and nanotube-based materials, Applied Physics A, 74,339(2002). [15] J.Kong, N.R. Franklin et al. Nanotube Molecular Wires as Chemical Sensors, Science,287,622.(2000). [16] C. Liu et al. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science, 286, 1127(1999). [17] P. Cheng, et al. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderste Yemperature, Science, 285, 91(1999). [18] R.L. Vander Wal, Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes, Chemical physics Letters,324,217(2000). [19] L. Yuan, K. Saito, C. Pan, F.A. Williams, et al. Nanotubes from methane flame, Chemical physics Letters,340,237(2000). [20] R.L. Vander Wal, Lee J. Hall, et al. Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst, Journal Physics Chemical B,106,13122(2002). [21] A.V. Savelive, W.M. Merchan, et al. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame, Combust and flame,135,27(2003). [22] R.L. Vander Wal, Thomos M. Ticich, Flame and Furnace Synthesis of Single-Walled and Multi-Walled Carbon Nanotubes and Nanofibers, Journal Physics Chemical B,105,10249(2001). [23] J.T. Mckinnon, W. Bell, R.M. Barkley, Combustion synthesis of fullerenes, Combustion and Flame,88,102(1992). [24] F.C. Lockwood, J.E. Van Niekerk, Parametric Study of a Carbon Black Oil Furnace, Combustion and Flame,103,76(1995). [25] G.D. Ulrich, et al. Flme Synthesis of Fine Particles, Chemical Engineering News,22(1984). [26] Jack B. Howard, K. Das Chowdhury, John B. Vander Sande, Carbon shells in flames , Nature,370,363(1994). [27] Jack B. Howard, J. Thomas McKinnon, Yakov Makarovsky, Arthur L. Lafleur, M. Elaine Johnson, Fullerenes C60 and C70 in flames, Nature,352,139(1991). [28] Jack B. Howard, Arthur L. Lafleur, Yakov Makarovsky, Saibal Mitra, Christopher J. Pope and Tapesh K. Yadav, Fullerenes synthesis in combustion, Carbon, 30,1183(1992). [29] D. Ugarte, Onion-Like Graphitic Particles, Carbon,33,989(1995). [30] Jack B. Howard, K. Das Chowdhury, John B. Vander Sande, Carbon shells in flames, Nature 370, 603(1994). [31] Anish Goel, Peter Hebgen, John B. Nander Sande, Jack B. Howard, Combustion synthesis of fullerenes and fullerenic nanostructures, Carbon,40,177(2002) . [32] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Contineous production of aligned carbon nanotubes: a step closer to commercial realization, Chemical physics Letters,303,467(1999). [33] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science,274,1701(1996). [34] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Controlled production of aligned-nanotube bundles, Nature,388,52(1997). [35] Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, W. Y. Zhou, W. Z. Li, L. X. Qian, Very long carbon nanotubes, Nature,394,631(1998). [36] Jing Kong, Hyongsok T. Soh, Alan M. Cassell, Calvin F. Quate, Hongjie Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature,395,878(1998). [37] Gary G. Tibbetts and Daniel W. Gorkiewicz, A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons , Carbon,31,809(1993). [38] T. Masuda, S. R. Mukai and K. Hashimoto, The liquid pulse injection technique: A new method to obtain long vapor grown carbon fibers at high growth rates , Carbon,31,783(1993). [39] R. L. Vander Wal, Thomas M. Ticich, Comparative flame and furnace synthesis of single-walled carbon nanotubes, Chemical physics Letters,336,24(2001). [40] R. L. Vander Wal, Lee J. Hall, Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences, Chemical physics Letters,349,178(2001). [41] R. L. Vander Wal, Flame sunthesis of substrate-supported metal-catalyzed carbon nanotubes, Chemical physics Letters,324,217(2000). [42] R. L. Vander Wal, Thomas M. Ticich, Valerie E. Curtis, Substrate-support interactions in metal-catalyzed carbon nanofiber growth, carbon,39,2277(2001). [43] R. L. Vander Wal, Thomas M. Ticich, Valerie E. Curtis, Diffusion flame synthesis of single-walled carbon nanotubes, Chemical physics Letters,323,217(2000). [44] Liming Yuan, Kozo Saito, Chunxu Pan, F.A. Williams, A.S. Gordon, Nanotubes from methane flames, Chemical physics Letters,340,237(2001). [45] Liming Yuan, Kozo Saito, Wenchong Hu, Zhi Chen, Ethylene flame synthesis of wall-aligned multi-walled carbon nanotubes, Chemical physics Letters,346,23(2001). [46] R. L. Vander Wal, Lee J. Hall, Ferrocene as a Precursor Reagent for Metal-catalyzed Carbon Nanotubes: Competing Effects, Combustion and Flame,130,27(2002). [47] R. L. Vander Wal, Fe-Catalyzed Single-Walled Carbon Nanotube Synthesis within a Flame Environment, Combustion and Flame,130,37(2002). [48] R. L. Vander Wal, Flame synthesis of Ni-catalyzed nanofibers, Carbon,40,2101(2002). [49] R. L. Vander Wal, Lee J. Hall, Gordon M. Berger, Optimization of Flame Synthesis for Carbon nanotubes Using Supported Catalyst, Journal of Physic Chemical B,106,13122(2002). [50] W.M. Merchan, A. Saveliev, Lawrence A. Kennedy, Alexander Fridman, Formation of carbon nanotubes in counter-flow,Oxy-methane diffusion flames without catalysts, Chem. Phys. Lett.,354,20(2002). [51] Chunxu Pan, Qiaoliang Bao, Well-aligned carbon nanotubes from ethanol flame, Journal of Materials Science Letters,21,1927(2002). [52] R. L. Vander Wal, G. M. Berger, T.M. Ticich, Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation, , Applied Physics.,77,885(2003) . [53] Liming Yuan, Tianxiang Li, Kozo Saito, Growth mechanism of carbon nanotubes in methane diffusion flames, Carbon,41,1889(2003). [54] Baker RTK, Catalytic growth of carbon filaments, Carbon,27,315(1989). [55] A. V. Savelive, W. M. Merchan-Merchan, Lawrence A. Kennedy, Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame, Combustion and Flame,135,27(2003). [56] G. W. Lee, Jongsoo Jurng, Jungho Hwang, Formation of Ni-catalyzed carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame, Combustion and Flame,139,167(2004). [57] W. M. Merchan, A. V. Savelive, L.A. Kennedy, High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control, Carbon,42,599(2004). [58] C. Kuzuya, M. Kohda, Y. Hishikawa, S. Motojima, Preparation of carbon micro-coils with the application of outer and inner electromagnetic field and bias voltage, Carbon,40,1991(2002). [59] Avigal Y, Kalish R., Applied Physic. Letters,78,2291(2001). [60] Anchal Srivastava, A.K. Srivastava, O.N. Srivastava, Curious aligned growth of carbon nanotubes under applied electric field, Carbon,39,201(2001). [61] Chunxu Pan, Yueli Liu, Feng Cao, Jianbo Wang, Yaoyao Ren, Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames, Micron,35,461(2004). [62] H. Okuno, J. P. Issi, J.C. Charlier, Catalyst assisted synthesis of carbon nanotubes using the oxy-acetylene combustion flame method, Carbon,43,855(2005). [63] S. Nakazawa, T. Yokomori, M. Mizomoto, Flame synthesis of carbon nanotubes in a wall stagnation flow, Chem. Phys. Lett.,403,158(2005). [64] F. W. A. H. Geurts and A. Sacco, The relative rates of the boudouard reaction and hydrogenation of CO over Fe and Co foils, Carbon,30,415(1992). [65] G. A. Jablonski, F. W. A. H. Geurts and A. Sacco, Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: II. Kinetics, Carbon,30,99(1992). [66] F. Stoeckli, A. Lavanchy, The adsorption of water by active carbons, in relation to their chemical and structural properties, Carbon,38,475(2000). [67] G. A. Jablonski, F. W. Geurts and A. Sacco, Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: I. Morphology, Carbon,30,87(1992). [68] Swarnendu Sen and Ishwar K Puri, Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles, Nanotechnology, 15,264(2004). [69] Bradley J. R., Chen Y. L., Sturner H. W., The structure of carbon filaments and associated catalytic particles formed during pyrolysis of natural gas in steel tubes, Carbon,23,715(1985). [70] K. Hernadi, A. Fonseca, P. Piedigrosso, M. Delvaux, J.B. Nagy, D. Bernaerts and J. Riga, Carbon nanotubes production over Co/silica catalysts, Catalysis Letters,48,229(1997) [71] J. Guinot, M. Audier, M. Coulon and L. Bonnetain, Formation and characterization of catalytic carbons obtained from CO disproportionation over an iron nickel catalyst—I, Carbon,19,95(1981). [72] T. Baird, J. R. Fryer and B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700°C, Carbon,12,591(1974). [73] E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor, chemical Physics Letters,317,65(2000). [74] M. Terrones, W.K. Hsu, H.W. Kroto et al., Topics in Current Chemistry,199,P1(1998). [75] 稻桓道夫,碳材料碳纖維工程,第46頁,民國90年 [76] 李元堯,21世紀的尖端材料-奈米碳管,民國90年 [77] http://nr.stic.gov.tw/ejournal/NSCM/9107/9107-01.pdf
|