跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳師偉
研究生(外文):Shih-wei Chen
論文名稱:智慧型監控系統架構設計
論文名稱(外文):Architecture Design for Intelligent Surveillance System
指導教授:蔡宗漢蔡宗漢引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:前景偵測物件標籤物件追蹤ASIC智慧攝影機
相關次數:
  • 被引用被引用:3
  • 點閱點閱:513
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位資訊化的演進,社會對監控器的需求量也與日俱增。監視器拍攝的影像傳回監控主機端,在藉由人力監督的方式來達到其監控的目的。隨著監控攝影機數量的增加,單一人力監控數十個監控畫面的方式仍然顯得吃重、且容易因視覺疲勞遺漏重要資訊,為了達成此目的,我們讓攝影機擁有前處理的能力,在智慧監控系統中,如何在多個物件交錯時達到追蹤的效果一直是個挑戰,本論文提出一個智慧型監控系統架構設計,主要由四種影像處理模組組成,包含Foreground Detection、Sliced Connected component Labeling、Object Grouping及Object Tracking,將上述四種演算法以硬體架構實現,我們以TSMC 90nm的製程去實現我們的設計,我們的設計操作在4MHz在不包含memory的情況下約為18.71K的gate count,消耗功率約為11.4037mW,memory使用量為92.288Kbytes。只需利用物件的中心點以及邊框就能夠追蹤物件,並且解決交錯時發生的問題。
The digital surveillance system becomes more and more popular in recent years. It attempts to raise amount of high resolution cameras, consequently those systems stupendously increase the computational load on central server. As in the intelligent object recognition processing flow, the technique on segmentation and tracking multiple targets, such as tracking group of people through occlusion is still challenging. In this paper, we present an architecture design for intelligent surveillance system. Mainly made up of four image processing module composed, contains foreground detection, sliced connected component labeling, object grouping and object tracking. We have a complete system-level solution on algorithm and VLSI implementation. This design is using TSMC 90 nm library with 4 MHz operation frequency. Without calculating memory of gate count about 18.71K. Power consumption about 11.4037mW and memory usage is 92.288Kbytes. Simply use the center and boundary box of the object will be able to track objects, and solve the problem occurs when occlusion.
摘要 I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VII
CHAPTER 1 Introduction 1
1.1 MOTIVATION 1
1.2 OBJECT TRACKING OVERVIEW 3
1.3 THESIS ORGANIZATION 5
CHAPTER 2 Overall of the Proposed Architecture Design for Intelligent Surveillance System 6
2.1 FOREGROUND DETECTION 8
2.1.1. Algorithm of Background Subtraction 8
2.1.2. Architecture of Background Subtraction 9
2.2 SLICED CONNECTED COMPONENT LABELING 10
2.2.1. Algorithm of Object Labeling 10
2.2.2. Architecture of Sliced Connected Component Labeling 16
2.3 OBJECT GROUPING 20
2.3.1. Algorithm of Object Grouping 20
2.3.2. Architecture of Object Grouping 23
2.4 OBJECT TRACKING 24
2.4.1. Algorithm of Object Tracking 24
2.4.2. Architecture of Object Tracking 30
2.5 APPLICATION 32
2.5.1. Vision Based Indoor Positioning 32
CHAPTER 3 Experimental Results 35
3.1 ANALYZE THE WHOLE SYSTEM 35
3.2 RESULT OF OBJECT TRACKING 36
3.3 CHIP SPECIFICATION 38
3.4 RESULT OF INDOOR POSITIONING 40
CHAPTER 4 Conclusion 45
REFERENCES 47

[1] M. Valera and S. Velastin, “Intelligent distributed surveillance systems: A review,” IEE Proc. Vis. Image, Signal Process., vol. 152, no. 2, pp. 192–204, Apr. 2005.
[2] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl, “Autonomous multicamera tracking on embedded smart cameras,” EURASIP J. Embed. Syst., vol. 2007, pp. 1–10, Jan. 2007.
[3] S. Fleck and W. Straber, “Smart camera based monitoring system and its application to assisted living,” Proc. IEEE, vol. 96, no. 10, pp. 1698– 1714, Oct. 2008.
[4] J.-W. Hsieh, Y.-T. Hsu, H.-Y. M. Liao, and C.-C. Chen, “Video based human movement analysis and its application to surveillance systems,” IEEE Trans. Multimedia, vol. 10, no. 3, pp. 372–384, Apr.
[5] Fei Zhang; Pinyi Ren; Hao Chen; Guobing Li, "Embedded intelligent video surveillance and cooperative tracking system," Communications and Networking in China (CHINACOM), 2012 7th International ICST Conference on , vol., no., pp.632,637, 8-10 Aug. 2012.
[6] Yilmaz, A., Javed, O., and Shah, M. 2006. “Object tracking: A survey”. ACM Comput. Surv. 38, 4, Article 13,December 2006.
[7] M. Shah and S. Khan. “Tracking multiple occluding people by localizing on multiple scene planes.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 31–3:505–519, 2009.
[8] Veenman, C.J.; Reinders, M.J.T.; Backer, E., "Resolving motion correspondence for densely moving points," in Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.23, no.1, pp.54-72, Jan 2001.
[9] P. Kumar, S. Ranganath, K. Sengupta, and H. Weimin, “Cooperative Multitarget tracking with efficient split and merge Handling”, IEEE Trans. Circuits and systems for video technology, vol. 16, no. 12, December 2006.
[10] A. Senior, A. Hampapur, Y. Tian, L. Brown, S. Pankanti, and R. Bolle.” Appearance models for occlusions handling. “In IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, 2001.
[11] A. Elgammal and L. Davis. “Probabilistic framework for segmenting people under occlusion.” In IEEE International Conference on Computer Vision, 2001.
[12] T. Zhao and R. Nevatia. “Tracking multiple humans in complex situations.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26–9:1208–1221, 2004.
[13] A. Amer, “Voting-based simultaneous tracking of multi-ple video objects”, IEEE Trans. Circuits and systems for video technology, vol. 15, no. 11, November 2005.
[14] I. Haritaoglu, D. Harwood, and L. S. Davis,” W4: real-time surveillance of people and their activities” IEEE Trans. Pattern Anal Machine intell., vol. 22, no. 8, August 2000.
[15] Kumar, V.S.; Irick, K.; Al Maashri, A.; Vijaykrishnan, N., "A Scalable Bandwidth Aware Architecture for Connected Component Labeling," VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on , vol., no., pp.116,121, 5-7 July 2010 J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
[16] Tsung-Han Tsai; Chih-Hao Chang, "A High Performance Object Tracking Technique with an Adaptive Search Method in Surveillance System," in Multimedia (ISM), 2014 IEEE International Symposium on , vol., no., pp.353-356, 10-12 Dec. 2014.
[17] W.-K. Chan et al., “Efficient Content Analysis Engine for Visual Surveillance Network,” IEEE Trans. Circuit Syst. Video Technol., vol. 19, pp. 693 – 703, May. 2009.
[18] Chih-Hsien Hsia; Tsung-Cheng Wu; Jen-Shiun Chiang; Chi-Fang Hsieh, "VLSI architecture design of moving objects detection using adaptive least-mean-square scheme," in Intelligent Signal Processing and Communications Systems (ISPACS), 2011 International Symposium on , vol., no., pp.1-6, 7-9 Dec. 2011.
[19] Tsung-Han Tsai; Chih-Hao Chang, "Design for an Intelligent Surveillance System based on System-on-a-Programmable-Chip Platform," 2014.
[20] PETS2006“, In Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, US – 18 June 2006.
[21] PETS2010“, In Conjunction with IEEE Computer Society (PAMI TC) and IEEE Signal Processing Society (IVMSP TC) Boston, US - 29th August 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top