|
[1]K. Chan, Progress in traditional Chinese medicine, Trends in Pharmacological Sciences, vol. 16, pp. 182-187, 6, 1995. [2]B. Patwardhan, D. Warude, P. Pushpangadan, and N. Bhatt, Ayurveda and Traditional Chinese Medicine: A Comparative Overview, Evidence-Based Complementary and Alternative Medicine, vol. 2, pp. 465-473, Dec 2005. [3]G. Gu and L. Yi, Shen Nong’s Herbal Classic, ed: University of Lanzhou Press, 2004. [4]S. Li and X. Luo, Compendium of materia medica: bencao gangmu: Foreign Languages Press, 2003. [5]C. Buff, J. Orantes, and P. L. Kirk, Paper electrophoretic identification of microquantities of some toxicologically significant alkaloids and comparison with chromatography, Microchemical Journal, vol. 3, pp. 13-18, 1959. [6]G. Domagk, Chemotherapie der bakteriellen Infektionen, Angewandte Chemie, vol. 48, pp. 657-667, 1935. [7]P. Ehrlich, Partial cell functions, Scandinavian Journal of Immunology, vol. 31, pp. 4-13, 1990. [8]N. Møller and J. O. L. Jørgensen, Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects, Endocrine reviews, vol. 30, pp. 152-177, 2009. [9]T. Reimers, R. Cowan, J. McCann, and M. Ross, Validation of a rapid solid-phase radioimmunoassay for canine, bovine, and equine insulin, American journal of veterinary research, vol. 43, p. 1274, 1982. [10]G. Walsh, Biopharmaceuticals: biochemistry and biotechnology: Wiley. com, 2006. [11]P. Gramatica, Principles of QSAR models validation: internal and external, QSAR & combinatorial science, vol. 26, pp. 694-701, 2007. [12]M. Karelson, Molecular descriptors in QSAR/QSPR vol. 1: Wiley-Interscience New York, 2000. [13]K. Čapek, RUR (Rossum's universal robots): Penguin. com, 2004. [14]S. Schaut, Robots of Westinghouse: 1924-Today: Mansfield Memorial Museum, 2007. [15]T. T. Leagues, Asimov’s Three Laws of Robotics, Advisory Editors, p. 20. [16]J. G. Keramas, T. Schin, F. McAvey, and L. Produced By-Main, Robot technology fundamentals: Delmar Learning, 1998. [17]R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H. Muggleton, et al., Functional genomic hypothesis generation and experimentation by a robot scientist, Nature, vol. 427, pp. 247-252, 2004. [18]L. N. Soldatova and R. D. King, An ontology of scientific experiments, Journal of the Royal Society Interface, vol. 3, pp. 795-803, 2006. [19]M. Kanehisa and S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic acids research, vol. 28, pp. 27-30, 2000. [20]S. F. Altshul, T. L. Madden, A. Shaffer, J. Zhang, Z. Zhang, W. Miller, et al., Gapped BLAST and PSI-BLAST: a new search generation of protein database programs, Nucleic Acids Res, vol. 25, pp. 3389-3402, 1997. [21]W. R. Pearson, Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms, Genomics, vol. 11, pp. 635-650, 1991. [22]R. D. King, S. Muggleton, R. A. Lewis, and M. Sternberg, Drug design by machine learning: The use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase, Proceedings of the national academy of sciences, vol. 89, pp. 11322-11326, 1992. [23]A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, et al., Review Towards Robot Scientists for autonomous scientific discovery, Autom Exp, vol. 2, 2010. [24]R. D. King, S. H. Muggleton, A. Srinivasan, and M. Sternberg, Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming, Proceedings of the National Academy of Sciences, vol. 93, pp. 438-442, 1996. [25]C. Hansch, Quantitative structure-activity relationships in drug design, Drug design, vol. 1, pp. 271-342, 1971. [26]T. Kindt, S. Morse, E. Gotschlich, and K. Lyons, Structure-based strategies for drug design and discovery, Nature, vol. 352, p. 581, 1991. [27]T. P. Kenakin, T. P. Kenakin, and Kenakin, Pharmacologic analysis of drug-receptor interaction: Lippincott-Raven Philadelphia, 1997. [28]C. McInnes, Virtual screening strategies in drug discovery, Current opinion in chemical biology, vol. 11, pp. 494-502, 2007. [29]W. P. Walters, M. T. Stahl, and M. A. Murcko, Virtual screening--an overview, Drug Discovery Today, vol. 3, pp. 160-178, 1998. [30]A. D. Andricopulo, R. V. Guido, and G. Oliva, Virtual screening and its integration with modern drug design technologies, Current medicinal chemistry, vol. 15, pp. 37-46, 2008. [31]Y. Koren and Y. Koren, Robotics for engineers vol. 168: McGraw-Hill New York et al, 1985. [32]N. Sharkey and A. Sharkey, Electro-mechanical robots before the computer, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, pp. 235-241, 2009. [33]L. J. Everett and H. Tsing-Wong, The theory of kinematic parameter identification for industrial robots, Journal of dynamic systems, measurement, and control, vol. 110, pp. 96-100, 1988. [34]G. Lundström, Industrial robot grippers, Industrial Robot: An International Journal, vol. 1, pp. 72-82, 1974. [35]J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, An overview of machine learning, in Machine learning, ed: Springer, 1983, pp. 3-23. [36]J. R. Anderson, R. S. Michalski, R. S. Michalski, and T. M. Mitchell, Machine learning: An artificial intelligence approach vol. 2: Morgan Kaufmann, 1986. [37]J. R. Quinlan, Learning efficient classification procedures and their application to chess end games, in Machine learning, ed: Springer, 1983, pp. 463-482. [38]E. Feigenbaum and B. Buchanan, DENDRAL and META-DENDRAL: Roots of knowledge systems and expert system applications, Artificial Intelligence. v59 i1, vol. 2, pp. 233-240, 1994. [39]R. E. Stepp and R. S. Michalski, Conceptual clustering of structured objects: A goal-oriented approach, Artificial Intelligence, vol. 28, pp. 43-69, 1986. [40]R. S. Michalski and Y. Kodratoff, Research in machine learning, Machine learning: An artificial intelligence approach, vol. 3, pp. 3-30, 1990. [41]H. Chen, Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms, Journal of the American Society for Information Science, vol. 46, pp. 194-216, 1995. [42]J. S. Albus, A new approach to manipulator control: The cerebellar model articulation controller, in (CMAC), Trans. Asme, Series G. Journal Of Dynamic Systems, Measurement And Control, 1975. [43]H. B. Barlow, Unsupervised learning, Neural computation, vol. 1, pp. 295-311, 1989. [44]D. E. Rumelhart, G. E. Hintont, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol. 323, pp. 533-536, 1986. [45]B. Widrow and M. A. Lehr, 30 years of adaptive neural networks: perceptron, madaline, and backpropagation, Proceedings of the IEEE, vol. 78, pp. 1415-1442, 1990. [46]B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144-152. [47]K. P. Murphy, Naive Bayes classifiers, ed: Technical Report, 2006. [48]D. Wettschereck, D. W. Aha, and T. Mohri, A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms, Artificial Intelligence Review, vol. 11, pp. 273-314, 1997. [49]H. Almuallim and T. G. Dietterich, Learning with Many Irrelevant Features, in AAAI, 1991, pp. 547-552. [50]M. Dash and H. Liu, Feature selection for classification, Intelligent data analysis, vol. 1, pp. 131-156, 1997. [51]L. C. Molina, L. Belanche, and À. Nebot, Feature selection algorithms: A survey and experimental evaluation, in Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, 2002, pp. 306-313. [52]T. K. Ho, The random subspace method for constructing decision forests, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, pp. 832-844, 1998. [53]D. W. Opitz, Feature selection for ensembles, in AAAI/IAAI, 1999, pp. 379-384. [54]P. Langley and H. A. Simon, Applications of machine learning and rule induction, Communications of the ACM, vol. 38, pp. 54-64, 1995. [55]D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine learning, neural and statistical classification, 1994. [56]L. G. Heins and D. R. Tauritz, Adaptive resonance theory (ART): an introduction, published in, 1995. [57]L.-J. Lin, Self-improving reactive agents based on reinforcement learning, planning and teaching, Machine learning, vol. 8, pp. 293-321, 1992. [58]Z. Zhihua, C. Zhaoqin, S. Dong, and C. Shifu, THE DESIGN AND APPLICATION OF FAST ADAPTIVE CLASSIFIER FTART2, 1999. [59]L. K. Hansen and P. Salamon, Neural network ensembles, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12, pp. 993-1001, 1990. [60]D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learning, Machine learning, vol. 3, pp. 95-99, 1988. [61]S. Chengyi, S. Yan, and X. Keming, Mind-evolution-based machine learning and applications, in Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000, pp. 112-117. [62]C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning vol. 1: springer New York, 2006. [63]M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, The Journal of Machine Learning Research, vol. 1, pp. 211-244, 2001. [64]A. Kandel, Fuzzy techniques in pattern recognition: Cambridge Univ Press, 1982. [65]O. Michel, Webots-User Guide, Cyberbotics (http://www. cyberbotics. com), 1998. [66]O. Michel, Webots, Reference manual, Users guide, ed.
|