跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂杰龍
研究生(外文):Chieh-LungLu
論文名稱:利用閘控串聯電容器於抑制混合蒸汽渦輪機與風渦輪機發電系統之次同步共振
論文名稱(外文):Suppression of Subsynchronous Resonance in Hybrid Steam-Turbine and Wind-Turbine Generation Systems Using Thyristor-Controlled Series Capacitors
指導教授:王醴
指導教授(外文):Li-Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:219
中文關鍵詞:離岸式風場閘控串聯電容器次同步扭轉振盪混合蒸汽渦輪機
外文關鍵詞:Offshore wind farmsthyristor-controlled series capacitorsubsynchronous resonancehybrid steam-turbine
相關次數:
  • 被引用被引用:2
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係研究以閘控串聯電容器來抑制含有蒸汽渦輪機以及風力渦輪機發電系統次同步扭轉振盪。文中係以國際電機電子工程師學會次同步共振之第一標準模型做為基礎,與以雙饋式感應發電機為主之離岸式風場整合後,經由共同匯流排與串聯補償電容器連接至無限匯流排,探討當離岸式風場併入後,對原有系統所造成之影響。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立同步發電機、以雙饋式感應發電機為主之離岸式風場及閘控串聯電容器等模型,並利用極點安置法設計閘控串聯電容器之比例-積分-微分阻尼控制器。在穩態特性方面,針對線路串聯補償比、同步發電機之端電壓、輸出功率、輸出功率因數以及風場風速變動做頻域特徵值分析。在暫態及動態模擬方面,完成轉矩干擾、風速變動以及三相短路故障等模擬結果。由穩態、動態及暫態模擬結果得知,當加入閘控串聯電容器結合比例-積分-微分阻尼控制器後,能有效抑制含有風場之蒸汽渦輪機發電系統的次同步扭轉振盪。
This thesis presents the suppression of subsynchronous resonance (SSR) in hybrid steam-turbine and wind-turbine generation systems using a thyristor-controlled series capacitor (TCSC). This research is based on the IEEE First Benchmark Model joining with a doubly-fed induction generator (DFIG)-based offshore wind farm (OWF). The q-d axis equivalent-circuit model under three-phase balanced loading conditions is used to establish the complete studied system. A proportional-integral- derivative (PID) damping controller of the TCSC is designed by using pole-assignment approach based on modal control theory. Steady-state characteristics of the studied system under different series compensation ratios, wind speed of OWF as well as terminal voltage, output active power, and power factor of the synchronous generator are performed. Time-domain dynamic simulations under disturbance conditions are also carried out. The results show that the proposed TCSC joined with the designed damping controller are effective to suppress the SSR of the integrated power systems.
目錄
頁次
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 X
符號說明 XV
第一章 緒論 1
1-1 研究動機 1
1-2 串聯電容補償簡介 3
1-3 相關文獻回顧 6
1-4 本論文之貢獻 11
1-5 研究內容概述 11
第二章 系統與數學模型 13
2-1 前言 13
2-2 質量-彈簧-阻尼器系統之數學模型 17
2-3 調速機之數學模型 18
2-4 蒸汽渦輪機轉矩之數學模型 19
2-5 同步發電機之數學模型 20
2-6 激磁機之數學模型 23
2-7 串聯電容補償系統之數學模型 24
2-8 閘控串聯電容器之數學模型 24
2-9 風速之數學模型 25
2-10 風渦輪機之數學模型 28
2-11 風渦輪機與發電機間轉矩之模型 30
2-12 旋角控制器之模型 32
2-13 離岸式風場雙饋式感應發電機之模型 33
第三章 利用極點安置法設計阻尼控制器 40
3-1 前言 40
3-2 PID阻尼控制器之設計 40
3-3 控制器參數之靈敏度分析 47
第四章 系統之穩態分析 52
4-1 前言 52
4-2 架構一之穩態分析 54
4-2-1 輸電線路補償比變化時之系統SSR
模態特徵值分析 .55
4-2-2 發電機輸出實功率變化時之系統SSR
模態特徵值分析 64
4-2-3 發電機端電壓變化時之系統SSR
模態特徵值分析 73
4-2-4 發電機功率因數變化時之系統SSR
模態特徵值分析 .82
4-3 架構二之穩態分析 91
4-3-1 輸電線路補償比變化時之系統SSR
模態特徵值分析 .91
4-3-2 風速變動時之系統SSR模態特徵值分析 100
第五章 動態與暫態響應分析 109
5-1 前言 109
5-2 架構一之動態分析 109
5-2-1 發電機發生轉矩干擾時之動態分析 110
5-2-2 無限匯流排發生三相短路故障時之暫態分析 129
5-3 架構二之動態分析 148
5-3-1 風場發生轉矩干擾時之動態分析 148
5-3-2 風場發生風速變動時之動態分析 166
5-3-3 無限匯流排發生三相短路故障時之暫態分析 184
第六章 結論與未來研究方向 208
6-1 結論 208
6-2 未來研究方向 209
參考文獻 210
附錄 216
作者簡介 218

參考文獻
[1]T. Ackeman, Wind Power in Power Systems, John Wiley & Sons, 2005.
[2]Y. N. Yu, Electric Power System Dynamics, New York: Academic Press, 1983.
[3]P. M. Anderson, B. L. Agrawal, and J. E. Van Ness, Subsynchron ous Resonance in Power Systems, New York: IEEE Press, 1990.
[4]M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York: IEEE Press, 1976.
[5]D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance tests at Mohave, IEEE Trans. Power Apparatus and Systems, vol. 94, no. 5, pp. 1878-1885, September/October 1975.
[6]IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance, IEEE Trans. Power Apparatus and Systems, vol. 96, no. 5, pp. 1565-1572, September/October 1977.
[7]IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance, IEEE Trans. Power Apparatus and Systems, vol. 104, no. 5, pp. 1057-1066, May 1985.
[8]IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Apparatus and Systems, vol. 98, no. 6, pp. 1872-1875, November 1979.
[9]IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Apparatus and Systems, vol. 104, no. 2, pp. 321-327, February 1985.
[10]IEEE Committee Report, “Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems, IEEE Trans. Power Systems, vol. 2, no. 2, pp. 830-834, May 1991.
[11]L. Wang and Y. Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static Var compensations: A comparative study, IEEE Trans. Energy Conversion, vol. 3, no. 1, pp. 22-29, March 1998.
[12]L. Wang and Y. Y. Hsu, “Modal control of an HVDC system for the damping of subsynchronous oscillations, IEE Proc. Generation, Transmission and Distribution, vol. 136, no. 2, pp. 78-86, March 1989.
[13]S. G. Jalali, R. H. Lasseter, and I. Dobson, “Dynamic response of a thyristor controlled switched capacitor, IEEE Trans. Power Delivery, vol. 9, no. 3, pp. 1609-1615, July 1994.
[14]Series Compensation Boosting transmission capacity, http://www05.abb.com/global/scot/scot221, retrieved date: June 13, 2013.
[15]R. P. Carpanen and B. S. Rigby, “A FACTS-based power flow model for the IEEE SSR first benchmark model, in Proc. IEEE Power Engineering Society Conference and Exposition in Africa, Johannesburg, South Africa, July 16-20, 2007, pp. 1-8.
[16]X. Zheng, Z. Xu, and J. Zhang, “A supplementary damping controller of TCSC for mitigating SSR, in Proc. IEEE Power & Energy Society General Meeting, Hangzhou, China, July 26-30, 2009, pp. 1-5.
[17]R. Thirumalaivasan, M. Janaki, and N. Prabhu, “Damping of SSR using subsynchronous current suppressor with SSSC, IEEE Trans. Power Systems, vol. 28, no. 1, pp. 64-74, February 2013.
[18]Y. Tang and R. Q. Yu, “Impacts of large-scale wind power integration on subsynchronous resonance, in Proc. Power and Energy Engineering Conference (APPEEC), Nanjing, China, March 25-28, 2011, pp. 1-4.
[19]Y. Tang and R. Q. Yu, “Mechanism analysis of using thyristor controlled serious compensation to mitigate subsynchronous resonance, in Proc. IPEC Conference Proceedings, Nanjing, China, October 27-29, 2010, pp. 1094-1099.
[20]H. Hosseini and B. Tousi, “Mitigating SSR in hybrid wind-steam turbine with TCSC based fuzzy logic controller and adaptive neuro fuzzy inference system controller, Journal of World’s Electrical Engineering and Technology, vol. 2, no. 1, pp. 35-42, December 2012.
[21]L. L. Fan and Z. Miao, “Mitigating SSR using DFIG-based wind generation, IEEE Trans. Sustainable Energy, vol. 3, no. 3, pp. 349-358, July 2012.
[22]H. Ghahramani, A. Lak, M. Farsadi, and H. Hosseini, “Mitigation of SSR and LFO with TCSC based conventional damping controller optimized by PSO algorithm and fuzzy logic controller, Turkish Journal of Electrical Engineering and Computer Sciences, pp. 1-29, January 2012.
[23]Y. He, P. Sicard, J. Xu, Z. Yao, and V. Rajagopalan, “A unified optimal controller design of TCSC to improve the power system dynamic stability, in Proc. IEEE Power Engineering Society Winter Meeting, New York, NY, U.S.A., January 31-February 4, 1999, pp. 743-748.
[24]R. K. Varma, Y. Semsedini, and S. Auddy, “Mitigation of subsynchronous oscillations in a series compensated wind farm with thyristor controlled series capacitor (TCSC), in Proc. Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, Clemson, SC, March 13-16, 2007, pp.331-337.
[25]L. A. S. Pilotto, A. Bianco, Willis F. Long, and A. A. Edris, “Impact of TCSC control methodologies on subsynchronous oscillations, IEEE Trans. Power Delivery, vol. 18, no. 1, pp. 243-252, January 2003.
[26]S. O. Faried, I. Unal, D. Rai, and J. Mahseredjian, “Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators, IEEE Trans. Power Systems, vol. 28, no. 1, pp. 452-459, February 2013.
[27]P. Chittora and N. Kumar, “An induction machine damping unit for damping SSR in a series compensated power system, in Proc. IEEE 5th India International Conference on Power Electronics (IIICPE), New Delhi, India, December 6-8, 2012, pp. 1-6.
[28]Q. Liu, C. Zhou, L. Angquist, and Christian, “A novel active damping control of TCSC for SSR suppression in a radial corridor, in Proc. Third International Conference on Electric Utility Deregulation and Restructuring and power Technologies, Nanjuing, China, April 6-9, 2008, pp. 136-142.
[29]R. K. Varma and A. Moharana, “SSR in double-cage induction generator-based wind farm connected to series-compensated transmission line, IEEE Trans. Power Systems, vol. PP, no. 99, pp. 1-11, July 2013.
[30]Z. Miao, “Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network, IEEE Trans. Energy Conversion, vol. 27, no. 4, pp. 984-991, December 2012.
[31]A. Moharana and R. K. Varma, “Subsynchronous resonance in single-cage self-excited-induction-generator-based wind farm connected to series-compensated lines, IET Generation, Transmission, and Distribution, vol. 5, no. 12, pp. 1221-1232, September 2011.
[32]J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system dynamics simulations, in Proc. IEEE Power Tech. Conference, June 23-26, 2003.
[33]H. S. Ko, G. G. Yoon, and W. P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location, IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, November 2007.
[34]L. Yang, G. Y. Yang, Z. Xu, Z. Y. Dong, K. P. Wang, and X. Ma, “Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement, IET Generation, Transmission, and Distribution, vol. 4, no. 5, pp. 579-597, December 2009.
[35]P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
[36]D. Rai, S. O. Faried, G. Ramakrishna, and A. Edris, “Hybrid series compensation scheme capable of damping subsynchronous resonance, IET Generation, Transmission, and Distribution, vol. 4, no. 3, pp. 456-466, November 2009.
[37]C. Zhu, L. Fan, and M. Hu, “Control and analysis of DFIG-based wind turbines in a series compensated network for SSR damping, in Proc. IEEE Power and Energy Society General Meeting, Minneapolis, MN, U.S.A., July 25-29, 2010, pp. 1-6.
[38]G. Gross and M. C. Hall, “Synchronous machine and torsional dynamic simulation in the computation of electromagnetic transients, IEEE Trans. Power Apparatus and Systems, vol. 97, no. 3, pp. 1074-1086, March 1978.
[39]R. K. Varma, S. Auddy, and Y. Semsedini, “Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers, IEEE Trans. Power Delivery, vol. 23, no. 3, pp. 1645-1654, July 2008.
[40]X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid, IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 987-994, April 2006.
[41]梁宏榮,利用閘流體控制串聯電容器以抑制次同步共振,國立成功大學電機工程研究所碩士論文,1996年六月。
[42]黃其文,利用閘流體控制串聯電容器之H∞控制器以抑制次同步共振,國立成功大學電機工程研究所碩士論文,1997年六月。
[43]李興傑,閘控串聯電容器在感應電機控制特性之研究,國立成功大學電機工程學系碩士論文,2002年七月。
[44]劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年六月。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊