跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉冠伶
研究生(外文):Liu, Kuan - Ling
論文名稱:以潛在類別分析探討共病症疾病對新發結直腸癌病患存活之影響
論文名稱(外文):Using Latent Classification Analysis to Examine the Influence of Comorbidity on Survival of Newly Diagnosed Colorectal Cancer patients.
指導教授:謝碧晴謝碧晴引用關係
指導教授(外文):Hsieh, Pi - Ching
口試委員:李中一丁金聰
口試委員(外文):Li, Chung -YiTing, Chin - Tsung
口試日期:2016-01-20
學位類別:碩士
校院名稱:國立臺北護理健康大學
系所名稱:健康事業管理研究所
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:107
中文關鍵詞:結直腸癌共病症潛在類別分析存活
外文關鍵詞:colorectal cancercomorbiditylatent class analysismortality
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
目標:探討新發結直腸癌世代合併有共病症疾病之潛在類別組別及對其術後一年死亡的影響。

方法:採回溯性世代研究法,研究對象為2000年至2009年新診斷結直腸癌病患(N = 15,854),潛在類別分析病患初次診斷前一年共病症潛在類別分組。邏輯思迴歸分析潛在類別組別對其術後一年死亡之影響。

結果:經潛在類別分析,兩性共病症各產生些微不同的五組最佳模式。性別分層發現在控制其他變項情況下,男性初次診斷前一年合併有「以腦血管為核心」、「以慢性肺部疾病為核心」比合併有「以消化性潰瘍為核心」之死亡風險高出1.25倍(95% CI [1.05, 1.50])及1.27倍(95% CI [1.07, 1.50])。 女性初次診斷前一年合併有「以失智症為核心」、「以腦血管為核心」比合併有「以消化性潰瘍為核心」之死亡風險高出1.68倍(95% CI [1.19, 2.38])及1.28 倍(95% CI [1.01, 1.62])。

結論:合併多重共病症經潛在類別分析產生五組最佳模式。不同性別及不同共病症疾病組別對其術後一年死亡風險有不同程度的影響。結果可提供專業醫療人員早期發現早期提供治療或預防。衛生政策單位可依據結果針對風險較高的共病症建立衛生教育或治療指引,以降低癌症病患的死亡風險。

Objective: To explore the latent classification of comorbidity and evaluate the influence of latent classes on the one-year mortality of colorectal cancer patients after surgery.

Methods : The retrospective cohort study included patients with at lease one comorbidity before the newly diagnosed of colorectal cancer from 2000 to 2009(N=15,854). The latent classification analysis was used to identify the latent clases of comobidity. The logistic regression analysis was used to evaluate the influence of latent classes on the one year mortality.

Results: Latent class analysis indicated most suitable 5 subgroups, and mild differences were found between two genders. For male, comparing patients with peptic ulcer comobidity, patients with cerebrovascular and chronic pulmonary comorbidity had higher risk of mortality (OR= 1.25, 95% CI [1.05, 1.50]; OR= 1.27, 95% CI [1.07, 1.50], respectively). For women, comparing patient with peptic ulcer comobidity, patients with cerebrovascular and dementia comorbidity had higher risk of mortality (OR= 1.28, 95% CI [1.01, 1.62]; OR=1.68, 95% CI [1.19, 2.38], respectively).

Conclusion: Identifying comobidities into 5 subgroups were best models for latent class analysis. One-year mortality after surgery depends on genders and different comobidity subgroups. These results can be useful to medical teams to take proper prevention and treatment. Health policy maker can establish the guideline of health education and treatment for those patients with risky comorbidity to early reduce the risk of mortality on cancner patients.

目錄 III
表次 IV
圖次 V
第一章諸論 1
第一節研究背景與動機 1
第二節問題陳述 1
第三節研究目的與研究問題 3
第四節研究之重要性 3
第二章文獻探討 4
第一節世界各國罹患結直腸癌之流行病學 5
第二節共病症疾病對結直腸癌術後之影響 17
第三節其它影響結直腸癌術後死亡的危險因子 26
第四節潛在類別分析(Latent Class Analysis, LCA)方法之優勢 34
第三章研究方法 38
第一節研究架構 38
第二節 研究設計 39
第三節 研究對象 39
第四節研究資料來源與變項操作行定義 42
第五節 研究資料處理過程 53
第六節統計方法 57
第四章研究結果 59
第一節研究對象之特性 59
第二節共病症疾病潛在分類 60
第三節結直腸癌病患術後一年死亡之相關因素 64
第四節共病症疾病潛在類別組別對於病患術後一年死亡之影響 68
第五章討論與建議 88
第一節研究結論與討論 88
第二節為本研究之優點、限制與建議 95
第三節為研究結果之應用 97
參考文獻 99
中文部分 99
英文部分 101
附錄A 107
共病症疾病ICD-9-CM代碼 107

王南天(2013)․新發乳癌病患併發靜脈血栓栓塞之相關因素及對存活的影響:以2000 – 2008乳癌是代為例․未發表之碩士論文,國立臺北護理健康大學,臺北。
王惠莉(2010)․新診斷結直腸癌病人接受手術之中長期存活及照護支出․未發表之碩士論文,高雄醫學大學,高雄。
全民健康保險研究資料庫(無日期) ․服務簡介․http://nhird.nhri.org.tw/brief_01.html
行政院內政部統計處(2014)․103年簡易生命表․取自http://sowf.moi.gov.tw/stat/Life/List.html
行政院衛生福利部國民健康署(2014)․2013年『國民健康訪問調查』․取自http://nhis.nhri.org.tw/2013download.html
行政院衛生福利部國民健康署(2014)․本署健康統計․取自http://www.hpa.gov.tw/BHPNet/Web/Stat/Statistics.aspx
朱育增、吳肖琪(2010)․回顧與探討次級資料適用之共病測量方法․臺灣公共衛生雜誌,29(1),8-21。
吳毓瑩、林原宏(1996)․潛在類別分析取向的除法概念結構․測驗年刊,43,345-358。
林怡潔(2011)․新診斷結直腸癌切除病患治療療效和醫療資源利用․未發表之碩士論文,高雄醫學大學,高雄。
邱皓正(2008)․潛在類別模式:原理與技術․台北市:五南圖書公司。
葉恩惠(2014)․新發結直腸癌併發腸阻塞之相關因素及對存活的影響:以2000-2009結直腸癌世代為例․未發表之碩士論文,國立臺北護理健康大學,臺北。
蔡香君(2010)․長期追蹤結直腸癌患者之療效與醫療資源耗用․未發表之碩士論文,高雄醫學大學,高雄。
謝郁珠(2006) ․直腸癌切除術後醫療利用與品質相關因素之探討․未發表之碩士論文,國立陽明大學,臺北。
英文部分
Al-Refaie, W. B., Parsons, H. M., Habermann, E. B., Kwaan, M., Spencer, M. P., Henderson, W. G., & Rothenberger, D. A. (2011). Operative outcomes beyond 30-day mortality: Colorectal cancer surgery in oldest old. Annals of surgery, 253(5), 947-952. doi: 10.1097/SLA.0b013e318216f56e
Angell-Andersen, E., Tretli, S., Coleman, M. P., Langmark, F., & Grotmol, T. (2004). Colorectal cancer survival trends in Norway 1958–1997.European Journal of Cancer, 40(5), 734-742. doi:10.1016/j.ejca.2003.09.034
Barile, J. P. (2015). Patterns of chronic conditions and their Associations with behaviors and quality of life, 2010. Preventing Chronic Disease, 12. doi:http://dx.doi.org/10.5888/pcd12.150179
Bouchardy, C., Rapiti, E., Blagojevic, S., Vlastos, A. T., & Vlastos, G. (2007). Older female cancer patients: Importance, causes, and consequences of undertreatment. Journal of Clinical Oncology, 25(14), 1858-1869. doi:10.1200/JCO.2006.10.4208
D'Hoore, W., Sicotte, C., & Tilquin, C. (1993). Risk adjustment in outcome assessment: The Charlson comorbidity index. Methods of information in medicine, 32(5), 382-387.
Devon, K. M., Vergara-Fernandez, O., Victor, J. C., & McLeod, R. S. (2009). Colorectal cancer surgery in elderly patients: Presentation, treatment, and outcomes. Diseases of the Colon & Rectum, 52(7), 1272-1277. doi: 10.1007/DCR.0b013e3181a74d2e
Deyo, R. A., Cherkin, D. C., & Ciol, M. A. (1992). Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. Journal of Clinical Epidemiology, 45(6), 613-619. doi:10.1016/0895-4356(92)90133-8
Dimick, J. B., Cowan, J. A., Upchurch, G. R., & Colletti, L. M. (2003). Hospital volume and surgical outcomes for elderly patients with colorectal cancer in the United States. Journal of Surgical Research,114(1), 50-56. doi:10.1016/S0022-4804(03)00207-5
Frederiksen, B. L., Osler, M., Harling, H., Ladelund, S., Jørgensen, T., & Danish Colorectal Cancer Group. (2009). The impact of socioeconomic factors on 30-day mortality following elective colorectal cancer surgery: A nationwide study. European Journal of Cancer, 45(7), 1248-1256. doi:10.1016/j.ejca.2008.11.035. Epub 2009 Jan 10.
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215-231.
Hodgson, D. C., Zhang, W., Zaslavsky, A. M., Fuchs, C. S., Wright, W. E., & Ayanian, J. Z. (2003). Relation of hospital volume to colostomy rates and survival for patients with rectal cancer. Journal of the National Cancer Institute, 95(10), 708-716.
Iachina, M., Jakobsen, E., Moller, H., Lüchtenborg, M., Mellemgaard, A., Krasnik, M., & Green, A. (2015). The effect of different comorbidities on survival of non-small cells lung cancer patients.Lung, 193(2), 291-297.
Iezzoni LI, Foley SM, Daley J, Hughes J, Fisher ES & Heeren T. (1992). Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? The Journal of the American Medical Association, 267(16), 2197-203. doi:10.1001/jama.1992.03480160055034.


International Agency for Research on Cancer.(2014).Global Battle against cancer won’t be won with treatment alone effective prevention measures urgently needed to prevent cancer crisis. from https://www.iarc.fr/en/media-centre/pr/2014/pdfs/pr224_E.pdf
Joensuu, M., Mattila-Holappa, P., Ahola, K., Ervasti, J., Kivimäki, M., Kivekäs, T., ... & Virtanen, M. (2015). Clustering of adversity in young adults on disability pension due to mental disorders: A latent class analysis. Social Psychiatry and Psychiatric Epidemiology, 1-7.
Jorgensen, T. L., Hallas, J., Friis, S., & Herrstedt, J. (2012). Comorbidity in elderly cancer patients in relation to overall and cancer-specific mortality.British Journal of Cancer, 106(7), 1353-1360. doi: 10.1038/bjc.2012.46
Jullumstro, E., Wibe, A., Lydersen, S., & Edna, T. H. (2011). Colon cancer incidence, presentation, treatment and outcomes over 25 years. Colorectal Disease, 13(5), 512-518. doi: 10.1111/j.1463-1318.2010.02191.x.
Kenzik, K. M., Martin, M. Y., Fouad, M. N., & Pisu, M. (2015). Health‐related quality of life in lung cancer survivors: Latent class and latent transition analysis.Cancer, 121(9), 1520-1528. doi: 10.1002/cncr.29232
Lazarsfeld, P. F., Henry, N. W., & Anderson, T. W. (1968). Latent structure analysis. Boston: Houghton Mifflin.
Lehnert, T., Methner, M., Pollok, A., Schaible, A., Hinz, U., & Herfarth, C. (2002). Multivisceral resection for locally advanced primary colon and rectal cancer: an analysis of prognostic factors in 201 patients. Annals of surgery, 235(2), 217.
Longo, W. E., Virgo, K. S., Johnson, F. E., Oprian, C. A., Vernava, A. M., Wade, T. P., ... & Khuri, S. F. (2000). Risk factors for morbidity and mortality after colectomy for colon cancer. Diseases of the Colon & Rectum, 43(1), 83-91.
Montomoli, J., Erichsen, R., Christiansen, C. F., Ulrichsen, S. P., Pedersen, L., Nilsson, T., & Sørensen, H. T. (2013). Liver disease and 30-day mortality after colorectal cancer surgery: A Danish population-based cohort study. BioMed Gastroenterology, 13(1), 66.doi: 10.1186/1471-230X-13-66
Okyere, G. A., Tawiah, R., & Awuah-Mensah, K. (2015). Multimorbidity and unobserved heterogeneity in the study of clinical mortality.Universal Journal of Public Health, 3(3), 112-119. doi:10.13189/ujph.2015.030302
Ostenfeld, E. B., Norgaard, M., Thomsen, R. W., Iversen, L. H., Jacobsen, J. B., & Søgaard, M. (2013). Comorbidity and survival of Danish patients with colon and rectal cancer from 2000–2011: A population-based cohort study. Clinical Epidemiology,5(Suppl 1), 65 - 74.. doi: 10.2147/CLEP.S47154
Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J. C., ... & Ghali, W. A. (2005). Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical care, 1130-1139.
Rabeneck, L., Davila, J. A., Thompson, M., & El‐Serag, H. B. (2004). Outcomes in elderly patients following surgery for colorectal cancer in the veterans affairs health care system. Alimentary Pharmacology & Therapeutics, 20(10), 1115-1124. doi: 10.1111/j.1365-2036.2004.02215.x
Romano, P. S., Roos, L. L., & Jollis, J. G. (1993). Presentation adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives. Journal of Clinical Epidemiology,46(10), 1075-1079. doi:10.1016/0895-4356(93)90103-8
Schrag, D., Panageas, K. S., Riedel, E., Cramer, L. D., Guillem, J. G., Bach, P. B., & Begg, C. B. (2002). Hospital and surgeon procedure volume as predictors of outcome following rectal cancer resection. Annals of Surgery, 236(5), 583.
Schuler, M. S., Puttaiah, S., Mojtabai, R., & Crum, R. M. (2015). Perceived barriers to treatment for alcohol problems: A latent class analysis.Psychiatric Services, 66(11), 1221-1228.
Semmens, J. B., Platell, C., Threlfall, T. J., & Holman, C. A. J. (2000). A population-based study of the incidence, mortality and outcomes inpatients following surgery for colorectal cancer in western Australia. Australian and New Zealand Journal of Surgery, 70(1), 11-18. doi:10.1046/j.1440-1622.2000.01734.x
Simunovic, M., To, T., Baxter, N., Balshem, A., Ross, E., Cohen, Z., ... & Sigurdson, E. (2000). Hospital procedure volume and teaching status do not influence treatment and outcome measures of rectal cancer surgery in a large general population.Journal of Gastrointestinal Surgery, 4(3), 324-330.
Thompson, K., & Dale, W. (2015). How do I best manage the care of older patients with cancer with multimorbidity? Journal of Geriatric Oncology, 6(4), 249-253. doi: 10.1016/j.jgo.2015.05.005
Tong, L., Ahn, C., Symanski, E., Lai, D., & Du, X. L. (2014). Effects of newly developed chemotherapy regimens, comorbidities, chemotherapy-related toxicities on the changing patterns of the leading causes of death in elderly patients with colorectal cancer. Annals of Oncology, 25(6), 1234-1242. doi:10.1093/annonc/mdu131
Tannenbaum, S. L., Hernandez, M., Zheng, D. D., Sussman, D. A., & Lee, D. J. (2014). Individual-and neighborhood-level predictors of mortality in Florida colorectal cancer patients. Public Library of Science One, 9(8). doi:10.1371/journal.pone.0106322

van Eeghen, E. E., Bakker, S. D., van Bochove, A., & Loffeld, R. J. (2015). Impact of age and comorbidity on survival in colorectal cancer. Journal of Gastrointestinal Oncology, 6(6), 605. doi:10.3978/j.issn.2078-6891.2015.070
Valderas, J. M., Starfield, B., Sibbald, B., Salisbury, C., & Roland, M. (2009). Defining comorbidity: implications for understanding health and health services. The Annals of Family Medicine, 7(4), 357-363. doi: 10.1370/afm.983.
Wu, C. C., Hsu, T. W., Chang, C. M., Yu, C. H., & Lee, C. C. (2015). Age-adjusted Charlson comorbidity index scores as predictor of survival in colorectal cancer patients who underwent surgical resection and chemoradiation. Medicine, 94(2), e431. doi: 10.1097/MD.0000000000000431
Yeole, B. B., Sunny, L., Swaminathan, R., Sankaranarayanan, R., & Parkin, D. M. (2001). Population-based survival from colorectal cancer in Mumbai,(Bombay) India. European Journal of Cancer, 37(11), 1402-1408. doi:10.1016/S0959-8049(01)00108-3

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top