跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳珈瑾
研究生(外文):WU, JIA-JIN
論文名稱:綠豆水解物併用益生菌發酵之保健機能性
論文名稱(外文):Functionality of mung bean (Vigna radiate L.) hydrolysates fermented by probiotic
指導教授:殷儷容殷儷容引用關係
指導教授(外文):YIN, LI-JUNG
口試委員:王仕賢、謝淑玲、殷儷容
口試委員(外文):WANG, SHYH-SHYAN、HSIEH, SHU-LING、YIN, LI-JUNG
口試日期:2015-06-28
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:124
中文關鍵詞:綠豆酵素水解益生菌機能性成分抗氧化能力抗發炎
外文關鍵詞:Vigna radiata L.enzymatic hydrolysisprobioticfunctional compoundsantioxidant capacityanti-inflammatory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:976
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以全豆利用之概念,使用酵素水解綠豆,併用 Lactobacillus johnsonii BCRC 17010 或 Lactobacillus plantarum subsp. BCRC 10069 發酵,探討酵素水解與併用益生菌發酵對綠豆營養價值提升與保健機能性。結果顯示 1% 纖維素酶與 1% 澱粉酶同時添加於綠豆泥,以 50oC 水解 2 小時,經 Lactobacillus johnsonii BCRC 17010 或 Lactobacillus plantarum subsp. BCRC 10069 發酵 24 小時,菌數達 9.36 及 8.59 log CFU/mL;pH 值下降至 3.77 與 4.11。經掃描式電子顯微鏡觀察,綠豆水解物或發酵物之纖維結構明顯被破壞。總酚、類黃酮及花青素含量經水解後顯著增加;總胺基酸含量較未水解組增加 16% (52.8~61.24 g/100 mL),經 Lactobacillus plantarum subsp. BCRC 10069 發酵 24 小時後,總胺基酸含量增加 7% (65.56 mg/100 mL),顯示綠豆的生物活性成分可經由水解或發酵過程釋放出來。綠豆水解物與發酵物之清除 ABTS+• 自由基、抑制 α-澱粉酶及 α-葡萄糖苷酶活性之 IC50 值皆有顯著下降,分別為 0.47~1.52 mg/mL、1.89~2.14 mg/mL、35.85~45.89 mg/mL。經 GC/MS 分析之主要機能性成份為甲基麥芽酚 (Maltol) 與鄰苯二酚 (Catechol),其清除 ABTS+• 自由基之 IC50 值分別為 1.41 與 2.52 μg/mL。綠豆水解發酵物進行耐酸性與耐膽鹽試驗,於 pH 3.0 PBS 耐酸 3 小時之菌數分別維持在 9.13~9.15、8.13~8.20 log CFU/mL,膽鹽耐受性達 97.64%、95.37%。二種發酵物之安姆氏試驗結果顯示,無論添加活化代謝物質與否,對測試菌株 Salmonella typhimurium TA97a、TA98、TA100、TA102 及 TA1535 皆不會產生基因毒性。利用脂多醣 (LPS) 刺激小鼠巨噬細胞 (RAW 264.7) 產生發炎反應,在添加 40 mg/mL 之綠豆未水解物、水解物與二種發酵物處理 24 小時條件下,可抑制 LPS 誘發之一氧化氮 (36.80~90.40%)、介白素-1β (49.26~72.29%) 及介白素-6 (17.78~93.75%) 生成。由上述結果顯示,綠豆利用酵素水解或併用益生菌發酵有助於機能性成分釋出並提升其保健機能性。
This study aimed to improve the functionality of mung bean, sample was hydrolyzed by cellulase and amylase, and further fermented by Lactobacillus johnsonii BCRC 17010 or Lactobacillus plantarum subsp. BCRC 10069. After 2 hr hydrolysis at 50oC by the combination of 1% cellulase and 1% α-amylase and further 24 hr fermentation with Lactobacillus johnsonii BCRC 17010 or Lactobacillus plantarum subsp. BCRC 10069 at 37oC, the LAB counts increased to 9.36 and 8.59 log CFU/mL, and the pH declined to 3.77 and 4.11, respectively. Scanning electron microscope (SEM) photograph indicated that the obvious break occurred in fibers after hydrolysis and fermentation. Increases in the amounts of the total phenolic, flavonoid and anthocyanin content and total amino acid content of hydrolysates and fermented samples were observed, compared with those of non-hydrolysed samples. These phenomena suggested the release of bionutrients occurred after hydrolysis or fermentation process. In hydrolyzed and further fermented samples, significant decreases in half maximal inhibitory concentration (IC50) on ABTS+˙ radical scavenging (0.47~1.52 mg/mL), α-amylase (1.89~2.14 mg/mL) and α-glucosidase (35.85~45.89 mg/mL) were observed. Gas chromatography-mass spectrometry analysis revealed that the major components were maltol and catechol. The IC50 on ABTS+• radical scavenging were 1.44 and 2.52 μg/mL, respectively. The fermented mung bean hydrolysates maintained 9.13~9.15 log CFU/mL (97.64%), 8.13~8.20 log CFU/mL (95.37%) in acid resistance (PBS at pH 3.0) and bile tolerance tests, respectively. According to the Ames tests, obtained, no matter whether the activating metabolites were added or not, the fermented products did not cause the genomic toxicity on the tested microbes ( Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535). The inhibition of LPS-induced in murine macrophage cell (RAW 264.7) were used to investigate the anti-inflammatory activities of the hydrolysates and their fermented samples. Inhibition in the releasing of NO (36.80~90.40%), interleukin 1β (49.26~72.29%) and interleukin 6 (17.78~93.75%) were obtained, respectively. These data suggested that hydrolysis and fermentation have high potential to promote the releases of functional components, which could subsequently improve the functionality of mung bean.
謝誌
摘要
Abstract
目錄
表目錄
圖目錄
壹、研究目的與背景
貳、文獻回顧
一、綠豆 (Vigna radiata L.)
(一)綠豆之簡介與品種特性
(二)綠豆之營養與生理功能
二、酵素種類 (Enzyme type)
(一)纖維素酶 (Cellulase)
(二)澱粉酶 (Amylase)
三、益生菌 (Probiotic)
(一)益生菌之特性
(二)益生菌之種類
(三)益生菌之益處與應用
四、醣解酵素
(一)α-澱粉酶 (α-amylase)
(二)α-葡萄糖苷酶 (α-glucosidase)
五、自由基與活性氧化物 (Free radical and reactive oxygen species )
(一)自由基與活性氧化物對生理功能的影響
(二)抗氧化劑作用機轉
(三)天然抗氧化劑 (Natural antioxidant)
六、發炎反應 (Inflammatory response)
(一)巨噬細胞 (macrophage) 與發炎反應相關性
(二)發炎反應之介質 (mediators)
參、實驗設計
肆、實驗材料與方法
一、實驗材料
(一)原料與菌株
(二)主要藥品
(三)主要儀器
二、實驗方法
(一)水解條件探討
(二)益生菌發酵綠豆水解物試驗
(三)一般成份分析
(四)醣類成份分析
(五)機能性成份分析
(六)抗氧化能力
(七)蛋白質組成分析
(八)降血糖能力試驗
(九)綠豆發酵物之機能性分析
(十)綠豆水解物與發酵物之體外抗發炎能力分析
(十一)統計分析
伍、結果與討論
一、綠豆最適水解條件
二、纖維素酶與澱粉酶水解綠豆之結構變化
三、綠豆未水解或酵素水解併用益生菌發酵期間之結構變化
四、綠豆未水解或酵素水解併用益生菌發酵期間之 pH 值與菌數變化
五、綠豆水解物或酵素水解併用益生菌發酵期間之成份變化
六、益生菌發酵綠豆水解物之耐酸與耐膽鹽能力
七、綠豆水解物或酵素水解併用益生菌發酵期間之抗氧化能力
八、綠豆水解物或酵素水解併用益生菌發酵期間之抑制 α-amylase 與 α-glucosidase 活性能力
九、機能性成分定性與定量分析
十、安姆氏試驗 (Amest test)
十一、綠豆水解物與發酵物之體外抗發炎能力分析
陸、結論
柒、參考文獻

中華民國國家標準 CNS:食品中水分之檢驗方法,總號: 5033,類號:6114。
中華民國國家標準 CNS:食品中粗灰分之檢驗方法,總號: 5034,類號:6115。
中華民國國家標準 CNS:食品中粗蛋白質之檢驗方法,總號: 5035,類號:6116。
中華民國國家標準 CNS:食品中粗脂肪之檢驗方法,總號: 5036,類號:6117。
中華民國國家標準 CNS:水果及蔬菜汁飲料檢驗法-有機酸之測定,總號: 12635,類號: 6224。
王宜婕。2004。乳酸菌與雙叉桿菌發酵豆奶及其產品之抗氧化活性。國立臺灣大學。台北市。
王倩雯。2009。辣木葉萃取物在脂多醣誘發 RAW 264.7 巨噬細胞發炎反應之影響。輔仁大學。新北市。
江善宗,殷儷容。2006。纖維素水解酵素於綠藻工業之應用。農業生技產業季刊,7。
江靜芸。2010。綠藻風味接受性之改良。國立臺灣海洋大學。基隆市。
行政院衛生福利部食品藥物管理署。2015。食品營養成份資料。取自: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178#。
行政院衛生福利部食品藥物管理署。2015。可供食品使用原料彙整一覽表。取自: http://data.fda.gov.tw/frontsite/data/DataAction.do?method=doDetail&infoId=4。
行政院衛生福利部食品藥物管理署。1999。衛署食字第88037803號公告健康食品安全性評估方法。
吳昭慧,連大進。1999。粉綠豆,少量多樣化雜糧作物栽培技術手冊。 pp.64-70。
吳昭慧。2012。台南農業改良場綠豆與大豆的研發與推廣。台南區農業專訊。81: 21-25。
李金婷。2013。四羥乙烯葡萄糖苷對大腸癌之調控作用。國立高雄海洋科技大學。高雄市。
李明達,陳柏翰。2007。微生物與健康產業-有益微生物。科學發展,415。
林宏達。2003。認識糖尿病。台灣糖尿病協會。台北市。
林志勳。2011。有機酸和乳酸菌之相互關係。現代養豬。32(12): 18-20。
林秋吟。2015。益生菌發酵黑豆水解物之機能性。國立高雄海洋科技大學。高雄市。
林鈺珊。2011。紅心番石榴茶製程開發中抗氧化與抑制 α-葡萄糖苷酶活性之探討。國立宜蘭大學。宜蘭縣。
紀雅偵。2005。竹蟶內臟澱粉酶之純化及其特性。國立臺灣海洋大學。基隆市。
郭雅婷。2009。探討 Bacillus subtilis YJ1 蛋白酶與幾丁質酶水解蝦殼廢棄物之條件及開發幾丁寡醣益生菌發酵飲品。國立高雄海洋科技大學。高雄市。
陳乃菁,余碧,邱文石,曾浩洋。1993。碳源及培養條件對 Trichoderma reesei 生產纖維素分解酵素之影響。農林學報。42: 9-17。
陳智強。2004。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。國立臺灣大學。台北市。
陳建甫,徐美菁,謝昌成,吳克恭。2007a。益生菌的臨床應用現況。基層醫學。22(8): 290-293。
陳惠英,顏國欽。1998。自由基、抗氧化防禦與人體健康。臺灣營養學會雜誌。23(1): 105-121。
陳慶源,黃崇真,邱雪惠,廖啟成。2007。乳酸菌之保健功效與產品開發。農業生技產業季刊。11: 60-68。
程姵雯。2014。蛋白酶水解與乳酸菌發酵對黃豆機能性的影響。靜宜大學。台中市。
黃亦昕。2014。探討以乳酸菌發酵中草藥對於抑制酪胺酸酶活性之美白效能評估。中華科技大學。台北市。
黃彥碩。2014。紅豆水解物併用益生菌發酵之保健機能性。國立臺灣海洋大學。基隆市。
齊倍慶。2001。從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究。國立清華大學。新竹市。
潘子明。2005。我國乳酸菌最近的研究趨勢暨通過健康食品認證之乳酸菌產品現況。農業生技產業季刊。3: 19-27。
熊皓儀。2014。核桃仁乙酸乙酯區分物及純化物質之抗氧化及醣解酵素抑制作用。東海大學。台中市。
蔡彥如。2013。長期追蹤兒童飲食研究:膳食纖維攝取。國立臺灣師範大學。台北市。
簡彣真。2010。紅麴黃梅汁飲品之製備及機能性評估。國立高雄海洋科技大學。高雄市。
劉俊訢。2008。以細胞培養模式評估魚鰾膠原蛋白萃取物對於造骨細胞以及抗發炎之影響。國立臺灣海洋大學。基隆市。
Abraham, E., Nagaraju, J., Salunke, D., Gupta, H., Datta, R. (1995). Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. Journal of Invertebrate pathology, 65(1): 17-24.
Agrawal, M., Pradeep, S., Chandraraj, K., Gummadi, S. N. (2005). Hydrolysis of starch by amylase from Bacillus sp. KCA 102: a statistical approach. Process Biochemistry, 40(7): 2499-2507.
Ali, N. M., Mohd Yusof, H., Yeap, S. K., Ho, W. Y., Beh, B. K., Long, K., Koh, S. P., Abdullah, M. P., Alitheen, N. B. (2014). Anti-inflammatory and antinociceptive activities of untreated, germinated, and fermented mung bean aqueous extract. Evidence-Based Complementary and Alternative Medicine, 2014: 1-6.
Ames, B. N., McCann, J., Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella / mammalian-microsome mutagenicity test. Mutation Research / Environmental Mutagenesis and Related Subjects, 31(6): 347-363.
A.O.A.C. (1997). Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists, Vol. 1, Section 12.1.07, Method 960.52.
Asgher, M., Asad, M. J., Rahman, S. U., Legge, R. L. (2007). A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79(3): 950-955.
Azarpazhooh, E., Boye, J. I. (2012). Composition of processed dry beans and pulses. In dry beans and pulses production, processing and nutrition, pp. 101-128: Blackwell Publishing Ltd.
Béguin, P., Aubert, J. P. (1994). The biological degradation of cellulose. FEMS microbiology reviews, 13(1): 25-58.
Bernfeld P. (1955). Amylase α and β. methods in enzymology. In: Colowick, 1. S., N. Ok, (Eds.), Academic Press Inc. New York. 1: 149-154.
Bisaria, V. S., Mishra, S., Eveleigh, D. E. (1989). Regulatory aspects of cellulase biosynthesis and secretion. Critical reviews in biotechnology, 9(2): 61-103.
Boye, J., Zare, F., Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2): 414-431.
Brena, B. M., Pazos C., Franco-Fraguas L., Batista-Viera F. (1996). Chromatographic methods for amylases. Journal of chromatography. B, Biomedical applications 684(1-2): 217-237.
Brummer, Y., Kaviani, M., Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67: 117-125.
Carr, A., & Frei, B. (1999). Does vitamin C act as a pro-oxidant under physiological conditions? FASEB Journal, 13(9): 1007-1024.
Chandrasiri, S. D., Liyanage, R., Vidanarachchi, J. K., Weththasinghe, P., Jayawardana, B. C. (2016). Does processing have a considerable effect on the nutritional and functional properties of mung bean (Vigna radiata) Procedia Food Science, 6: 352-355.
Chang, J. B., Chu, N. F., Syu, J. T., Hsieh, A. T., Hung, Y. R. (2011). Advanced glycation end products (AGEs) in relation to atherosclerotic lipid profiles in middle-aged and elderly diabetic patients. Lipids in health and disease, 10(1): 1-7.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. I. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66: 1219-1227.
Claeyssens, M., Van Tilbeurgh, H., Tomme, P., Wood, T. M., McRAE, S. I. (1989). Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochemical journal, 261(3): 819-825.
Coughlan, M. P. (1985). Cellulase: production properties and application. Biochemical Society Transactions, 13: 405-406.
Dandona, P., Thusu, K., Cook, S. (1996). Oxidative damage to DNA in diabetes mellitus. Lancet, 347: 444-445.
Desiere, F., Lucchini, S., Canchaya, C., Ventura, M., Brüssow, H. (2002). Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek, 82: 73-91.
Didier, H., T. Roger (2002). Initial responses to endotoxins and Gram-negative bacteria. Clinica Chimica Acta., 323: 59-72.
Dierick, N. A. (1989). Biotechnology aids to improve feed and feed digestion: enzyme and fermentation. Archives of animal nutrition, 39(3): 241-261.
Doi, E., Shibata, D., Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry, 118: 173-184.
Dong, H. Q., Li, M., Zhu, F., Liu, F. L., Huang, J. B. (2012). Inhibitory potential of trilobatin fromLithocarpus polystachyus Rehd. Against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chemistry, 130: 261-266.
Fridovich, I. (1978). The biology of oxygen radicals. Science, 201(4359): 875-880.
Fu, Y., Zu, Y., Liu, W., Hou, C., Chen, L., Li, S., Shi, X., Tong, M. (2007). Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. Journal of Chromatography A, 1139(2): 206-213.
Fu, Y., Zu, Y., Liu, W., Zhang, L., Tong, M., Efferth, T., Kong, Y., Hou, C., Chen, L. (2008). Determination of vitexin and isovitexin in pigeonpea using ultrasonic extraction followed by LC‐MS. Journal of separation science, 31(2): 268-275.
Giese, J. (1996). Antioxidants: tools for preventing lipid oxidation. Food technology, 50(11): 73-74, 76, 78-80.
Gordon, S. (1998). The role of the macrophage in immune regulation. Research in Immunology, 149(7): 685-688.
Halliwell, B., Murcia, M. A., Chirico, S., Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science & Nutrition, 35(1-2): 7-20.
Hanada, T. and A. Yoshimura (2002). Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Review, 3: 413-421.
Havenaar, R., Brink, B. T., Huis In ’t Veld, J. H. J. (1992). Selection of strains for probiotic use. In R. Fuller (Ed.), Probiotics: The scientific basis, (pp. 209-224). Dordrecht: Springer Netherlands.
Helda P. K., White L., Pasquali M. (2011). Quantitative urine amino acid analysis using liquid chromatography tandem mass spectrometry and aTRAQR reagents. Journal of Chromatography, 879: 2695-2703.
Heupel, C., Schlochtermeier, A., Schrempf, H. (1993). Characterization of an intracellular β-glucosidase from Streptomyces reticuli. Enzyme and microbial technology, 15(2): 127-132.
Honda, K., Moto, M., Uchida, N., He, F., Hashizume, N. (2012). Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of clinical biochemistry and nutrition, 51(2): 96-101.
Hung, K. T., Cheng, D. G, Hsu, Y. T., Kao, C. H. (2008). Abscisic acid-induced hydrogen peroxide is required for anthocyanin accumulation in leaves of rice seedlings. Journal of Plant Physiology, 165(12): 1280-1287.
Jia, Z., Tang, M., Wu, J. (1999). The determaination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559.
Jin, L. Z., Ho, Y. W., Abdullah, N., Jalaludin, S. (1998). Acid and bile tolerance of Lactobacillus isolated from chicken Intestine. Letters in Applied Microbiology, 27: 183-185.
Jurkiewicz, B. A., Bissett, D. L., & Buettner, G. R. (1995). Effect of topically applied tocopherol on ultraviolet radiation-mediated free radical damage in skin. Journal of Investigative Dermatology, 104(4): 484-488.
Kim, B. J., Kim, J. H., Heo, M. Y., Kim, H. P. (1998). Antioxidant and anti-inflammatory activities of the mung bean. 113: 71-74.
Kim, M. K., Nam, P. W., Lee, S. J., Lee, K. G. (2014). Antioxidant activities of volatile and non‐volatile fractions of selected traditionally brewed Korean rice wines. Journal of the Institute of Brewing, 120(4): 537-542.
Knight, J. A. (1995). Diseases related to oxygen-derived free radicals. Annals Clinical and Laboratory, 25: 111-121.
Kohno, A., Nanmori, T., Shinke, R. (1989). Purification of β-amylase from alfalfa (Medicago sativa L.) Seeds. Journal of biochemistry, 105(2): 231-233.
Kong, X., Zhou, H., Qian, H. (2007). Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry, 101(2): 615-620.
Kumar, S., Narwal, S., Kumar, V., Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9): 19-29.
Lapierre, L., Undeland, P., Cox, L. J. (1992). Lithium chloride-sodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. Journal of dairy science, 75(5): 1192-1196.
Lee, K. G., Mitchell, A. E., Shibamoto, T. (2000). Determination of antioxidant properties of aroma extracts from various beans. Journal of agricultural and food chemistry, 48(10): 4817-4820.
Lee, K. G., Shibamoto, T. (2000). Antioxidant properties of aroma compounds isolated from soybeans and mung beans. Journal of agricultural and food chemistry, 48(9): 4290-4293.
Lee, S. J., Lee, J. H., Lee, H. H., Lee, S., Kim, S. H., Chun, T., Imm, J. Y. (2011). Effect of mung bean ethanol extract on pro-inflammtory cytokines in LPS stimulated macrophages. Food Science and Biotechnology, 20(2): 519-524.
Li, W., Guo, H., Wang, P., Tian, X., Zhang, W., Saleh, A. S. M., Zheng, J., Ouyang, S., Luo, Q., Zhang, G. (2015). Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization. Carbohydrate Polymers, 131: 432-438.
Liang, C. W., Lai, Y. C., Chu, Y. H., (2004). A study of the effects of nine chinese herbs on proinflammatory cytokines production in two cell culture models. The Journal of Chinese Medicine, 15: 293-304.
Lilly, D. M., Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659): 747-748.
Lin, W. H., Hwang, C. F., Chen, L. W., Tsen, H. Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23 (1), 74-81.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., Ramdall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
Maher, S. G., Reynolds, J. V. (2011). Inflammation and gastrointestinal cancers: basic concepts of inflammation and its role in carcinogenesis (1st ed.). Berlin Heidelberg, Springer-Verlag.
Manu, P. G., Sarita, J., Yogendra, P. K., Ravindra, N. C. (2014). A reliable and rapid method for soluble sugars and RFO analysis in chickpea using HPAEC-PAD and its comparison with HPLC-RI. Food Chemistry, 154: 127-133.
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84(4): 407-412.
Namiki, M. (1990). Antioxidants/antimutagens in food. Critical Reviews in Food Science and Nutrition, 29(4): 273-300.
Ndhlala, A. R., Chitindingu, K., Mupure, C., Murenje, T., Ndhlala, F., Benhura, M. A., Muchuweti, M. (2008). Antioxidant properties of methanolic extracts from Diospyros mespiliformis (jackal berry), Flacourtia indica (Batoka plum), Uapaca kirkiana (wild loquat) and Ziziphus mauritiana (yellow berry) fruits. International Journal of Food Science & Technology, 43(2): 284-288.
Ni, H., Chen, Q. H., Chen, F., Fu, M. I., Dong, Y. C., Cai, H. N. (2011). Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL 31410 in submerged cultivation. African Journal of Biotechnology, 10(37): 7236-7244.
Nussler, A. K., Billiar, T. R. (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase. Journal of Leukocyte Biology, 54: 171-178.
Olejnik, A., Lewandowska, M., Obarska, M., Grajek, W. (2005). Tolerance of Lactobacillus and Bifidobacterium strains to low pH, bile salts and digestive enzymes. Electronic Journal of Polish Agricultural Universities 8(1): 05.
Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35(11): 771-775.
Pathmakanthan, S., Li, C. K., Cowie, J., Hawkey, C. J. (2004). Lactobacillus plantarum 299: beneficial in vitro immunomodulation in cells extracted from inflamed human colon. Journal of Gastroenterology and Hepatology, 19(2): 166-173.
Peng, X., Zheng, Z., Cheng, K. W., Shan, F., Ren, G. X., Chen, F., Wang, M. (2008). Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chemistry, 106(2): 475-481.
Pfeiffer, R. (1892). Untersuchungen über das Choleragift. Zeitschrift für Hygiene und Infektionskrankheiten, 11: 393-412.
Powning, R. F., Irzykiewicz, H. (1967). Separation of chitin oligosaccharides by thin-layer chromatography. Journal of Chromatography, 29(1): 115-119.
Sautebin, L. (2000). Prostaglandins and nitric oxide as molecular target for anti-inflammatory therapy. Fitoterapia. 71: S48-S57.
Shri, P., Chris, Kf. L., Diane, S., Adrian, R. R., Christopher, J. H. (2000). Differential immune responses to probiotic and pathogenic bacteria in normal and colitic patients. Gastroenterology 118(4): A113-A113.
Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzymology, 299: 152-178.
Staniek, K., Nohl, H. (1999). H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system1. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1413(2): 70-80.
Sun, W., Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1): 17-25.
Tosh, S. M., Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2): 450-460.
Witztum, J. L. (1994). The oxidation hypothesis of atherosclerosis. Lancet, 344: 793-795.
World Health Organization. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: Food and Agriculture Organization of the United Nations.
Yao, Y., Chen, F., Wang, M., Wang, J., Ren, G. (2008). Antidiabetic activity of Mung bean extracts in diabetic KK-Ay mice. Journal of agricultural and food chemistry, 56(19): 8869-8873.
Yao, Y., Cheng, X. Z., Wang, L. X., Wang, S. H., Ren, G. (2012). Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. International journal of molecular sciences, 13(3): 2707-2716.
Yadav, H., Jain, S., Sinha, P. R., (2008). The effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in diabetic rats. Journal of medicinal food, 11(1): 62-68.
Yamano, T., Tanida, M., Niijima, A., Maeda, K., Okumura, N., Fukushima, Y., Nagai, K., (2006). Effects of the probiotic strain Lactobacillus johnsonii strain La1 on autonomic nerves and blood glucose in rats. Life sciences, 79(20): 1963-1967.
Zhang, X., Shang, P., Qin, F., Zhou, Q., Gao, B., Huang, H., Yang, H., Shi, H., Yu, L. (2013). Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT - Food Science and Technology, 54(1): 171-178.
Zhao, D., Shah, N. P. (2016). Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion. Journal of Functional Foods, 20: 182-194.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top