跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹惠雯
研究生(外文):Hui-Wen Chan
論文名稱:利用Aspergillusoryzae固態發酵處理黃豆粕以去除寡醣暨過敏性蛋白質之研究
論文名稱(外文):Study on Solid-state Fermentation of Soybean Meal by Aspergillus oryzae for Removal of Oligosaccharides and Allergenic Proteins
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shuh Chen, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:133
中文關鍵詞:大豆粕抗營養因子固態發酵麴菌屬
外文關鍵詞:soybean mealanti-nutritional factorssolid-state fermentationAspergillus sp.Aspergillus sp.
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
大豆粕(soybean meal;SBM)是大豆經過抽油加工後主要的副產物,因富含蛋白質(40%),故常被當作家畜飼料中蛋白質的主要來源。唯豆粕中含有抗營養因子,降低其利用率。本研究旨在探討利用米麴菌(Aspergillus oryzae)在固態發酵模式下去除大豆粕之抗營養因子:包括脹氣因子(寡醣類)與抗原蛋白質(β-conglycinin和glycinin)之可行性。
首先進行發酵基質前處理,發現豆粕吸水力極佳,其與水比例為1:2.5以上時吸水之程度可達飽和,而加熱蒸煮過之豆粕其水分含量值偏高因此可省略此步驟。利用三角瓶(250 ml)進行A. oryzae之豆粕固態發酵培養最適培養條件為:豆粕與水比例1:1、接種量5%以及培養溫度為25℃,α-半乳糖苷酶(4.52 U/g)和酸性蛋白酶(109.85 U/g)的活性最高,且粗蛋白質含量增加10.73%。其次利用麴盤式進行豆粕之固態發酵培養,其最適培養條件為:豆粕與水比例2:1、接種量1%、培養溫度30℃及相對溼度90%下,培養時間30~35小時,此時有較佳活性的α-半乳糖苷酶(4.83 U/g)和酸性蛋白酶(43.05 U/g),且能完全消除豆粕中的寡醣以及抗原蛋白質β-conglycinin,並降低glycinin含量。粗蛋白質和胺基酸態氮含量也分別增加為51.43% 和0.45%。
經固態發酵24小時後之豆粕的粗酵素液,其α-半乳糖苷酶最適作用溫度和pH值分別為47℃和4.5,而酸性蛋白酶最適作用溫度和pH值分別為52℃和2.6,且兩酵素在37~52℃下活性均甚為穩定。利用上述條件,將發酵24小時之豆粕,加緩衝液促進其酵素水解作用時之最適作用條件為:豆粕與水比1:2,pH值3.0,於42℃下作用一小時,對於原本豆粕中的抗營養因子寡醣水蘇四糖以及過敏蛋白質β-conglycinin可去除,而對棉籽糖和glycinin蛋白質則有部份降低的效果。
Soybean meals have been used extensively as protein sources in animal feedstuffs because of their high protein content (around 44%). However, the thermo-stable anti-nutritional factors, i.e., allergenic proteins (mainly β-conglycinin and glycinin) and flatulence-producing factors (mainly stachyose and raffinose) that commonly exist in these soybean meals will affect the growth and health of animals and have limited their use in young animal diets. The purpose of this study was to investigate the factors affecting the solid-state fermentation condition of soybean meal by koji-mold Aspergillus oryzae in order to reduce anti-nutritional factors and improve its nutritional value.
Pre-treatment of raw material before fermentation was investigated. The water absorption ability was good for soybean meal. The moisture content reached equilibrium when ratio of soybean meal to water was at 1: 2.5, and which was independent of soaking time. Cooking methods had no effect on moisture content and could be omitted. The optimum fermentation conditions performed in Erlenmeyer flasks (capacity 250 ml) were established. The optimal ratio of soybean meals to water was 1:1 (moisture content 58.82%), and the fermentation was performed at 25℃ for 6~7 days with inoculum size at 5% (v/w). Peak activities of α-galactosidase and acid protease obtained were 4.52 and 109.85 U/g, respectively.
The optimum solid-state fermentation conditions by tray method were established. The optimal ratio of soybean meals to boiled water was 2:1 (moisture content 41.09%), and the fermentation was performed at 30℃ under 90% RH for 30~35 hr with inoculum size at 1% (v/w). Maximumα-galactosidase activity and acid protease activity obtained were 4.83 and 43.05 U/g, respectively. The oligosaccharides (stachyose and raffinose) of soybean meal were removed after fermented for 42 hr. Theβ-conglycinin of allergenic protein was also removed and the amount of glycinin decreased. Moreover, crude protein content and the amino nitrogen content of soybean meal increased after fermentation for 30~35 hr, and the maximum values obtained were 51.43% and 0.453%, respectively.
The optimum temperature and pH for both α-glactosidase and acid protease activity from crude enzyme solution of a fermented soybean meal (24 hr) were determined. The optimum temperature of α-galactosidase and acid protease activity were 47℃and 52℃, respectively. The optimum pH of α-galactosidase and acid protease activity were 4.5 and 2.6 U/g, respectively. These two enzymes were stable in the temperature range of 37-52℃.
The optimum conditions of limited enzymatic hydrolysis of 24 h fermentation were determined. The ratio of fermented soybean meal to water was 1:2, and the reaction was carried out at pH 3.0 and 42℃ for 1 hr. Under this condition, all stachyose and part of raffinose in the fermented soybean meal were removed. The β-conglycinin of allergenic protein was degraded and the amount of glycinin also decreased considerably.
It is concluded that solid-state fermentation of soybean meal by Aspergillus oryzae produced high levels of α-galactosidase and acid protease, and thereafter increased crude protein and amino nitrogen content. Contents of both flatulence-producing factors and allergenic proteins were largely removed. Nutritional value of soybean meals by such solid-state fermentation will be considerably upgraded.
中文摘要...................................... II
英文摘要………………………………………………………… III
壹、前言………………………………………………………… 1
貳、文獻整理…………………………………………………… 3
【壹】大豆……………………………………………………… 3
一、大豆的介紹與特性………………………………………… 3
二、大豆的用途………………………………………………… 3
【貳】大豆粕………………………………………………… 4
一、大豆粕的介紹與特性……………………………………… 4
二、大豆粕之製法……………………………………………… 4
三、大豆粕之製造工程………………………………………… 6
四、大豆粕於豬飼料中之應用………………………………… 8
【參】大豆中之抗營養因子……………………………………… 9
一、胰蛋白酶抑制因子………………………………………… 9
二、寡醣………………………………………………………… 11
三、抗原蛋白質………………………………………………… 13
【肆】固態發酵………………………………………………… 21
一、簡介………………………………………………………… 21
二、固態發酵的特性…………………………………………… 23
三、固態發酵之優缺點………………………………………… 25
【伍】關於Aspergillus屬與Aspergillus oryzae……… 26
一、Aspergillus屬的特性………………………………… 26
二、Aspergillus oryzae的特性………………………… 27
三、Aspergillus oryzae所產生之酵素………………… 28
參、材料與方法…………………………………………………… 31
【壹】實驗材料…………………………………………………… 31
一、原料………………………………………………………… 31
二、實驗菌株…………………………………………………… 31
三、培養基……………………………………………………… 31
四、化學藥劑…………………………………………………… 31
【貳】儀器設備…………………………………………………… 32
【參】電腦套裝軟體……………………………………………… 34
【肆】實驗方法…………………………………………………… 34
一、實驗大綱…………………………………………………… 34
二、實驗方法…………………………………………………… 35
(一) 孢子懸浮液的製備……………………………………… 35
(二) 黃豆粕固態發酵前處理………………………………… 35
(三) 黃豆粕三角瓶固態發酵培養…………………………… 36
(四) 黃豆粕麴盤式固態發酵培養…………………………… 37
(五) 發酵黃豆粕加緩衝液促進麴菌酵素作用最適條件之探討:粗酵素液之分析………………………………………37
(六) 發酵黃豆粕加緩衝液促進麴菌酵素作用最適條件之探討……38
三、分析方法……………………………………………………… 39
四、統計分析及圖形繪製………………………………………… 44
肆、結果與討論…………………………………………………… 45
【壹】黃豆粕固態發酵前處理…………………………………… 45
一、黃豆粕最適浸漬與蒸煮條件之探求……………………… 45
(一) 不同水分比例添加量對黃豆粕水分含量之影響……… 45
(二) 浸漬時間對黃豆粕水分含量之影………………………… 47
(三) 蒸煮方法和時間對黃豆粕水分含量之影響……………… 47
【貳】黃豆粕三角瓶固態發酵培養……………………………… 52
一、最適固態發酵培養條件之探討……………………………… 52
(一) 水分含量…………………………………………………… 52
(二) 接種量……………………………………………………… 58
(三) 不同培養溫度之探求……………………………………… 61
【參】黃豆粕麴盤式固態發酵培養……………………………… 70
一、最適固態發酵培養條件之探討……………………………… 70
最適培養時間…………………………………………………… 70
【肆】發酵黃豆粕加緩衝液促進麴菌酵素作用最適條件之探討 88
一、 粗酵素液之分析…………………………………………… 88
(一) 最適反應溫度和pH值之探求……………………………… 88
(二) 熱穩定性之探求…………………………………………… 92
二、發酵黃豆粕加緩衝液作用最適條件之探討………………… 97
(一) 作用pH值與溫度之影響…………………………………… 97
(二) 添加緩衝液量與作用時間之影響………………………… 101
伍、結論…………………………………………………………… 109
陸、參考文獻……………………………………………………… 111
圖表附錄…………………………………………………………… 126
王西華,林玉娟和程梅萍。1994。固態發酵的回顧與展望。生物產業5(3、4):17-24。
王麗蓉。2004。製麴與酒母製備條件對清酒釀造之影響。國立中興大學食品科學系碩士論
論文,台中市。
行政院衛生局食品衛生處編定。「台灣地區食品營養成分資料庫」。
林宏基,周正俊、張為憲。1979。α-Galactosidase 之生產及豆漿中寡醣類之去除。食
品科學 6(2):123-135。
林禮斌。2004。蛋白水解酵素處理大豆粕於離仔豬飼糧之應用性。國立中興大學畜產系碩
士論文,台中市。
林讚峰。1999。清酒麴之製造與品質管理。清酒製造技術 19-38。
邱健仁。1980a。醬油製造技術之展望-原料處理。食品工業 12(7):24-28。
邱健仁。1980b。醬油製造技術之展望-製麴。食品工業 12(8):27-32。
陳世爵、陳潤卿。1981。黃豆油與黃豆食品手冊,台灣。
陳國誠。1992。微生物酵素工程學。藝軒圖書出版社,台北市。
曾浩洋、董啟功。1985a。以Rhizopus thailandensis醱酵脫脂黃豆粉之酵素活性及生
化組成變化探討。J. Chin. Agric. Chem. Soc. 23(1、2):111-118。
曾浩洋、董啟功。1985b。以Rhizopus thailandensis醱酵脫脂黃豆粉之酵素活性及生
化組成變化探討:(二) 不同發酵條件及生化組成與流變性質之比較。J. Chin.
Agric. Chem. Soc. 23(3~4):300-307。
湯椀茹。2004。Aspergillus carneus M34 固態生產聚木糖酶之最適化條件及特性分
析。國立中興大學食品科學系 碩士論文,台中市。
賀世紅。2000。水分對靈芝菌絲體和子實體的影響。中國食用菌19(5):16。
黃正財。1983。麴。製酒科技專論彙編 5:145-160。
黃國榮、余嚴尊、李绣鈴。1993。台灣發酵麴菌之研究(I)保存麴菌之酵素生成性。食品
科學 20(6):567-573。
楊培牆、陳世爵。1979。醬油製造專輯。美國黃豆協會。台北,台灣。
楊盛行。2002。固態發酵在農工業上之應用。科學農業 50(1、2):156-167。
廖仁宏。2002。固態培養生產靈芝菌絲體之研究。私立東海大學化學
工程學系 碩士論文,台中市。
蔣宗哲。1998。米食加工。豐年叢書(HV#981)。PP. 149-154。豐年社。台北,台灣。
鄭長義。1991。飼料製造技術。華香園出版社。台北,台灣。
橫塚保(李正宏譯)。1989。醬油製造之原料蒸煮、製麴及醬醪發酵
(下)。食品工業 21(4):32-36。
闕文仁、鄧世正。1977。實用醬油釀造學。環宇出版社。台北,台灣。
顏宏達。1988。養豬飼料學。華香園出版社。台北,台灣。
羅國仁、余立文。2004。固態發酵製成的開發與應用。食品工業 36 (10):2-10。
蘇遠志、黃世佑。1971。微生物化學工程學。天然書社。台北,台灣。
續光清。1997。食品製造。徐氏基金會。台北,台灣。

Alexopoulos, C. J., Mims, C. W. and Blackwell, M. 1979. Class
ascomycetes subclass plectomycetidae. In Introductory Mycology
3rd. p291-295. John wiley &Sons Inc., NY.
Almirall, M., Francesch, M., Perez-Vendrell, A. M., Brufau, J. and
Estere-Garcia, E. 1995. The difference in testinal viscosity
produced by barly and -glucanase after digesta enzyme activity
and ileal nutrient digestibility more in brolier chicks than in
cocks. J. Nutr. 125: 947-955.
Anson, M. L. 1938. The estimation of pepsin, trypsin, papain and
cathepsin with hemoglobin. J. Gen. Physiol. 22:79-89.
A.O.A.C. 1995. Official methods of analysis, 16th ed., Horowiz(ed),
Washington D. C., USA.
Babu, K. R. and Satyanarayana, T. 1995. -Amylase production by
thermphilic Bacillus coagulans in solid-state fermentation.
Process Bio. 30:305-309.
Badley, R. A., Atkinson, D., Huauser, H., Oldani, D., Green, J. P.
and Stubbs, J. M. 1975. The structure, physical and chemical
properties of the soybean protein glycinin. Biochim. Biophys.
Acta 412,214.
Bajpai, S., Sharma, A. and Gupta, M. N. 2005. Removal and recovery
of anti-nutritional factors from soybean flour. Food Chem. 89:
497-501.
Barry, V. McCleary. 1988. α-D-glactosidase from Lucerne and guar
seed. Methods Enzymol. 160:627-628.
Battalion, R. A., Huergo, M., Pilosuf, A. M. R. and Bartholomai, G.
B. 1991. Culture requirements for production of protease by
Aspergillus oryzae in solid-state fermentation. Appl. Micro.
Bio. 35:292-296.
Bradford, M. M. 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein dye binding. Anal. Biochem. 72:248-254.
Burks, A. W., Williams, L. W., Helm, R. M., Thresher, W., Brooks, J.
R. and Sampson, H. A. 1991. Ch. 22, Identification of soy
protein allergens in patients with atopic dermatitis and
positive soy challenges;determination of change in allergenicity
after heating or enzymatic digestion. In Nutritional and
Toxicological Consequences of Food Processing, M. Friedman
(Ed.). PP. 295-307. Plenum Press, New York.
Catsimpoolas, N. and Ekenstam, C. 1969. Isolation of alpha, beta and
gamma conglycinin. Arch. Biochem. Biophys. 129:490-497.
Christi, Y. 1999. Solid substrate fermentation, enzyme production,
food enrichment, In Encyclopedia of Bioprocess Technology:
Fermentation, Biocatalysis and Bioseparation, M. C. Flickinger,
S. W. Drew (Eds.), John Wiley 5:2446-2462.
Cristofaro, E., Mottu, F. and Wuhrmann, J. J. 1970. Study of the
effect of stachyose and raffinose on the flatulence activity of
soymilk. The 3rd International Congress of Food Science and
Technology, Washington, D.C.
Decuypere, J. A., Meeusen, A. and Hendericks, H. K. 1981. Influence
of the partial replacement of milk protein by soybean protein
isolates with different physical properties on the performance
and nitrogen digestibility of early-weaned pigs. J. Anim. Sci.
53:1011-1018.
Delente, J. and Ladenburg, K. 1972. Quantitative determination of
the oligosaccharides in defatted soybean meal by gas-liquid
chromatography. J. Food Sci. 37:372-374.
Dunsford, B. R., Knabe, D. A. and Haensly, W. E. 1989. Effect of
dietary soybean meal on the microscopic anatomy of the small
intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1863.
Friesen, K. G., Nelssen, J. L., Goodband, R. D., Behnke, K. C. and
Kats, L. J. 1993. The effect of moist extrusion of soy products
on growth performance and nutrient utilization in the early-
weaned pig. J. Anim. Sci. 71:2099-2109.
Fukushima, D. 1991. Recent progress of soybean protein foods:
Chemistry, technology, and nutritional. Food Rev. Int. 7:323-351.
German, B., Damodaran, S. and Kinsella, J. E. 1982. Assessment of
protein digestibility by in vitro enzymatic hydrolysis with
simultaneous dialysis. J. Nutr. 112(9):1718-1725.
Gote, M., Umalkar, H., Khan, I. and Khire, J. 2004. Thermostable -
galactosidase from Bacillus stearothermophilus (NCIM 5146) and
its application in the removal of flatulence causing factors
from soymilk. Process Biochem. 39:1723-1729.
Grant, G. A., Han, Y. W. and Anderson, A. W. 1978. Pilot-scale
semisolid fermentation of straw. Appl. Environ. Microbiol. 35:
549-553.
Haines, P. C. and Lyman, R. L. 1961. Relationship of pancreatic
enzyme secretion to growth inhibition in rats fed soybean trpsin
inhibitor. J. Nutr. 74:445.
Hoogaschangen, M. J., Zhu, Y., van As, H., Tramper, J. and Rinzema,
A. 2001. Influence of wheat type and pretreatment on funhal
growth in solid-state fermentation. Biotechnol Lett. 23:1183-
1187.
Hrckova, M., Rusnakova, M. and Zemanovic, J. 2002. Enzymatic
hydrolysis of defatted soy flour by three different proteases
and their effect on the functional properties of resulting
protein hydrolysates. Czech. J. Food Sci. 20:7-14.
Hymowitz, T., Collins, F. I., Panczner, J. and Walker, W. M. 1972.
Relationship between the content of oil, protein, and sugar in
soybean seed. Agron. J. 64:613-616.
Ibrahim, S. S., Habiba, R. A., Shatta, A. A. and Embaby, H. E. 2002.
Effect of soaking, germination, cooking and fermentation on anti-
nutritional factors in cowpeas. Nahurung/Food 46 (2): 92- 95.
KeShun, L. 1999. Soybeans: chemistry, technology, and utilization. A
Chapman & Hall Food Science Book. USA.
Kim, S. Y., Park, P. S. W. and Rhee, K. C. 1990. Functional
properties of proteolytic enzyme modified soy protein isolate.
J. Agric. Food Chem. 38:651-656.
Kitamura, K. 1995. Genetic improvement of nutritional and food
processing quality in soybean. Jap. Agric. Res. Quart. 29:1-8.
Koide, T. and Ikenaka, T. 1973. Studies on soybean trypsin
inhibitors. 3. Amino acid sequences of the carboxyl-terminal
region and the complete amino-acid sequence of soybean trypsin
inhibitor (Kunitz). Eur. J. Biochem. 32(3):417-413.
Kotwal, S. M., Gote, M. M., Sainkar, S. R., Khan, M. I. and Khire,
J. M. 1998. Production of -galactosidase by thermophilic fungus
Humicola sp. in solid-state fermentation and its application in
soymilk hydrolysis. Process Biochem. 33(3):337-343.
Kotwal, S. M., Khan, M. I. and Khire, J. M. 1995. Production of
thermostable α-galactosidase from thermophilic fungus Humicola
sp. J. Ind. Microbiol. 15:116-120.
Lalles, J. P. and Peltre, G. 1996. Biochemical features of grain
legume allergens in humans and animals. Nutri. Rev. 54(4):101-
107.
LeBlane, J. G., Silvestroni, A., Connes, C., Juillard, V., Giori, G.
S., Piard, J. C. and Sesma, F. 2004. Reduction of non-
digestible oligosaccharides in soymilk: application of
engineered lactic acid bacteria that produce α-galactosidase.
Genet Mol Res. 30; 3(3):432-40.
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Hancock, J. D.,
Allee, G. L., Goodband, R. D. and Klemm, R. D. 1990. Transient
hypersensitivity to soybean meal in the early-weaned pig. J.
Anim. Sci. 68:1790-1799.
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Klemm, R. D.,
Giesting, D. W., Hancock, J. D., Allee, G. L., and Goodband, R.
D. 1991a. Measuring suitability of soybean products for early-
weaned pigs with immunological criteria. J. Anim. Sci. 69:3299.
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Klemm, R. D.,
and Goodband, R. D. 1991b. Interrelationship between
hypersensitivity to soybean protein and growth performance in
early-weaned pigs. J. Anim. Sci. 69:4092.
Liener, I. E. 1994. Implications of antinutritional components in
soybean foods. Crit. Rev. Food Sci. Nutr., 34(1):31-67.
Lonsane, B. K., Ghildyal, N. P., Budiatman, S. and Ramakrishna, S.
V. 1985. Engineering aspects of solid-state fermentation. Enz.
Microbiol. Technol. 7:258-265.
Manoj, G., Harshali, U., Islam, K. and Jayant, K. 2004. Thermostable
α-glactosidase from Bacillus stearothermophilus (NCIM 5146) and
tis application in the removal of flatulence causing factors
from soymilk. Process Bio. 39:1723-1729.
Marsman, G. J. P., Gruppen, H., Mul, A. J. and Voragen, A. G. J.
1997. In vitro accessibility of untreated, toasted, and extruded
soybean meals for proteases and carbohydrases. J. Agric. Food
Chem. 45:4088-4095.
Marquez, M. C. and Alonso, R. 1999. Inactivation of trypsin
inhibitor in chickpea. J. Food Compost. Anal. 12:211- 217.
Maxwell, M. E. 1952. Enzymes of Aspergillus oryzae. Aust. J. Sci. R
es. Ser. B 5:43-55.
Metchel, D. A. and Lonsane, B. K. 1992. Definition, characteristics
and potential. In Solid substrate cultivation, H. W. Doelle, D.
A. Mitechell and C. E. Rolz(eds.), Elsevsir Science Publisher,
London.Methods Enzymol. 160:627-628.
Michael, L. and Kargi, F. 1992. Operating considerations for
bioreactors for suspension and immobilized cultures. Bioprocess
Eng. 262-265.
Miller, B. G., Newby, T. J., Stokes, C. R. and Bourne, F. J. 1972.
Influence of diet on postweaning malabsorption and diarrhoea in
the pigs. Res. Vet. Sci. 36:187-193.
Moreira, M. A., Hermodson, M. A., Larkins, B. A. and Nielsen, N. C.
1979. Partial characterization of the acidic and basic
polypeptides of glycinin. J. Biol. Chem. 254:9921-9926.
Moroz, L. A. and Yang, W. H. 1980. Kunit soybean trypsin inhibitor.
A specific allergen in food anaphylaxis. New Engl. J. Med. 15:
1126-1128.
Murasawa, H., Sakamoto, A., Sasaki, H. and Harada, K. 1991. The
effect of glycinin subunit on tofu-making. In Japan Part
Proceedings of the International Conference on Soybean
Processing and Utilization, K. Okubo (Ed.). PP. 53-57.
Nagano, T., Hirotsuka, M., Mori, H., Kohyama, K. and Nishinari, K.
1992. Dynamic viscoelastic study on the gelation of 7S globulin
from soybeans. J. Agric. Food Chem. 40:941-944.
Nagel, F. J., Tramper, J., Bakker, M. S. and Rinzema, A. 2001.
Temperature control in a continuously mixed bioreactor for solid-
state fermentation. Biotechnol. Bioeng. 72:219-230.
Narahara, H., Koyama, Y., Yoshida, T. Pichangkura, S. Ueda, R. and
Taguchi, H. 1982. Growth and enzyme production in a solid state
culture of Aspergillus oryzae . J. Ferment. Technol. 60:331-319.
NRC, National Research Council. 1982. Joint, U.S.-Canadian Tables of
Feed Composition. Washington, D.C.
Ogawa, T., Tsuji, H., Bando, N., Kitamura, K., Zhu, Y. L., Hirano,
H. and
Nishikawa, K. 1993. Identification of the soybean allergenic
protein, Gly m Bd 30K, with the soybean seed 34-kDa oil-body-
associted protein. Biosci. Biotech. Biochem. 57:1030-1033.
Olguin, M. C., Hisano, N., D’Ottavio, A. E., Zingale, M. I.,
Revelant, G. C. and Calderari, S. A. 2003. Nutritional and anti-
nutritional aspects of an Argentinan soy flour assessed on
weanling rats. Journal of Food Compo. Anal. 16:441-449.
Pedersen, L. H., Lene, D. O. and Larsen, K. L. 2000. Sutitability
and limitation of methods for characterization of activity of
malto-oligosaccharide-forming amylase. Carbohydr. Res. 329:109-
119.
Peng, I. C., Dayton, W. R., Quass, D. W., and Allen, C. E. 1982.
Investigations of soybean 11S protein and myosin interaction by
solubility, turbidity, and titration studies. J. Food Sci. 47:
1976.
Ramesh, M. V. and Lonsane, B. K. 1990. Critical importance of
moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid state fermentation system.
Appl. Microbio. Biotechnol. 33:501-505.
Ramirez-Coronel, M. A., Viniegra-Gonzalez, G., Darvill, A. and
Augur, C. 2003. A novel tannase from Aspergillus niger with beta-
glucosidase activity. Microbiology. 149:2941-2946.
Rockland, L. B. 1969. “Dry Bean Res. Conf., 9th, held Fort Collins,
Colorado, August 13-15, 1968”, PP. 78-86. Agr. Res. Service, U.S.
Dept. of Agr., Albany California (ARS 74-5C)
Rommagnolo, D., Polan, C. E. and Barbeau, W. E. 1990. Degradability
of soybean meal protein fractions as determined by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis. J. Dairy Sci. 73:2379-
2385.
Samoto, M., Miyazaki, C., Ajasaka, T., Mori, H. and Kawamur, Y.
1996. Specific binding of allergenic soybean protein Gly m Bd 30
K with α’-and α-subunits of conglycinin in soy milk. Biosci.
Biotech. Biochem. 60(6):1006-1010.
Sandhya, C., Sumantha, A., Szakacs, G. and Pandey, A. 2005.
Comparative evaluation of neutral protease production by
Aspergillus oryzae in submerged and solid-state fermentation.
Process Biochem. 40:2689-2694.
Sato, K. and Sudo, S. 1999. Small-scale solid-state fermentations.
In Manual of Industrial Microbiology and Biotechnology. 2:61-63.
Shibasaki, M., Suzuki, S., Tajima, S., Nemoto, H. and Kuroume, T.
1980. Allergenicity of major components of soybean. Int. Arch
Allergy Appl. Immun. 61:441-448.
Shun, K., Wei, L. S., Steinberg, M. P., Nelson, A. I. and Hymowitz,
T. 1976. Extraction of oligosaccharides during cooking of whole
soybeans. J. Food Sci. 41:361.
Sissions, J. W. and Tolman, H. 1991. Anti-nutritional properties of
soybean antigens in calves. In Toxic Factors in Crop Plants.
Proceedings of the Second Spring Conference, March 22, J.P.F.
D’Mello and C.M. Duffus (Ed.). PP 62-85. Edinburgh.
Sissons, J. W., Nyrup, A., Kilshaw, P. J. and Smith, R. H. 1981.
Ethanol denaturation of soya bean protein antigens. J. Sci. Food
Agric. 33:706-710.
Smith, J. Jr., Clawson, A. J. and Barrick, E. R. 1976. Effect of
ratio of protein from corn and soybean meal in diets of varying
total protein on performance, carcass desirability and diet
digestibility in swine. J. Anim. Sci. 26:752-758.
Staswick, P. E., Hermodson, M. A. and Nielsen, N. C. 1981.
Identification of the acidic and basic subunit complexes of
glycinin. J. Biol. Chem. 256:8752-8755.
Steggerda, F. R. 1968. Gastrointestinal gas following food
consumption. Annal of the New York Academy of Sciences, 150, Art.
1, PP. 57-66.
Storebakken, T., Refstie, S. and Ruyter, B. 2000. Soy products as
fat and protein sources in fish feed for intensive aquaculture.
In J. K. Drackley (Ed.), Soy in Animal Nutrition. pp. 127-170.
Savoy, IL:Federation of Animal Science Society.
Stubbs, J. M. 1975. The structure, physical and chemical properties
of the soybean protein glycinin. Biochim. Biophys. Acta. 412,214.
Sugimoto, H. and Buren, J. P. V. 1970. Removal of oligosaccharides
from soy milk by an enzyme from Aspergillus saitoi. J. Food Sci.
35:655-660.
Tavares, S. R., Ramos, V., and de Barros, E. G. 1993. Hexanal
production and TBA number are reduced in soybean [Glycine max
(L.) Merr.] seeds lacking lipoxygenase isoztmes 2 and 3. J.
Agric. Food Chem. 41:103-106.
Thananunkul, D., Tanaka, M., Chichester, C. O. and Lee, T. C. 1976.
Degradation of raffinose and stachyose in soybean milk by α-
galactosidase from Mortierells vinacea. Entrapment of α-
galactosidase within polyacrylamide gel. J. Food Sci. 41:173-175.
Thanh, V. H. and Shibasaki, K. 1976. Major proteins of soybean
seeds. A straightforward fraction and their characterization. J.
Agric. Food Chem. 24(6):1117-1121.
Vandergrift, W. L., Knabe, D. A., Tanksley, T. D., Jr. and Anderson,
S. A. 1983. Digestibility of nutrients in raw and heated
soyflakes for pigs. J. Anim. Sci. 57:1215-1224.
Wang, H. L. 1967. Release of proteinase from mycelium of Mucor
hiemalis. J. Bacteriol. 93:1794-1799.
Wang, H. L., Vespa, J. B. and Hesseltine, C. W. 1974. Acid protease
production by fungi used in soybean food fermentation. Appl.
Microbiol. 27(5):906-911.
Wolf, W. J. and Cowan, J. C. (Ed.). 1975. Soybeans as a Food Source.
CRC Press, Cleveland, OH.
Wolf, W. J., Babcock, G. E. and Smith, A. K. 1961. Ultracentrifuge
differences in soybean protein composition. Nature 91:1395-1396.
Yusuf, C. 1999. Solid-state fermentation, Enzyme production, Food
enrichment. Encyclopedia of Bioprocess Technology:Fermentation,
Biocatalysis and Bioseparation 5:2450-2451.
Yamauchi, E., Yamagishi, T. and Iwabuchi, S. 1991. Molecular
understanding of heat-induced phenomena of soybean protein. Food
Rec. Int. 7:283-322.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top