跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋恩碩
研究生(外文):SONG, EN-SHOU
論文名稱:基於多項式模糊偏微分方程模型之半線性拋物線分布參數系統之逐點穩定控制
論文名稱(外文):Polynomial Fuzzy PDE Model Based Pointwise Stabilization for Semilinear Parabolic Distributed Parameter System
指導教授:蔡舜宏蔡舜宏引用關係
指導教授(外文):TSAI, SHUN-HUNG
口試委員:陶金旺鄭穎仁余國瑞
口試委員(外文):TAO, CHIN-WANGCHENG, YING-JENYU, GWO-RUEY
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:逐點穩定平方和方法狀態回授控制偏微分方程
外文關鍵詞:pointwise stabilizationsum-of-squares (SOS) approachstate feedback controlexponential pointwise stabilization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討半線性拋物線分布參數系統在逐點控制及指數穩定問題。首先,我們考慮一個以非線性拋物線型偏微分方程系統表示之分布參數系統,利用泰勒級數建模方法建模成一個多項式模糊拋物線偏微分系統。此外,針對多項式模糊拋物線偏微分系統設計三種不同狀態回授之模糊控制器,分別為全狀態回授、逐點狀態回授以及並列逐點狀態回授。而在穩定性分析的部分,我們利用多項式李亞普諾夫函數、尤拉齊次關係式及向量值Wirtinger不等式,推導出三個以平方和形式的指數穩定條件。最後,以一實際物理系統以及一個數值範例,驗證我們所提出方法之可行性及有效性。
In this thesis, the problems of pointwise control design and exponential stabilization for the semilinear parabolic distributed parameter systems are investigated. Firstly, a distributed parameter system which is expressed by the nonlinear parabolic partial differential equation (PDE) system is modeled as a polynomial fuzzy parabolic PDE system by Taylor’s series identification approach. For controller design, three kinds of fuzzy controllers are designed for the polynomial fuzzy parabolic PDE system including full state feedback, pointwise state feedback, and collocated pointwise state feedback. By examining the stability analysis, based on the homogeneous polynomial Lyapunov function, Euler's homogeneous relation, and vector-valued Wirtinger's inequality, three different exponential stabilization conditions are proposed in terms of sum-of-squares (SOS). Lastly, a physical system and a numerical example are illustrated to show the feasibility and validity of the proposed methods.
目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 v
第一章緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
1.4 符號標記 4
1.5 輔助定理 4
第二章半線性拋物線偏微分方程系統 8
2.1 系統架構 8
2.2 多項式模糊偏微分方程模型 9
第三章狀態回授控制器設計與穩定性分析 11
3.1 多項式模糊狀態回授控制器 11
3.2 全狀態回授(Full state feedback) 12
3.3 逐點狀態回授(Pointwise state feedback) 18
3.4 並列逐點狀態回授(Collocated pointwise state feedback) 22
第四章電腦模擬 28
4.1 範例1 28
4.1.1 全狀態回授 31
4.1.2 逐點狀態回授 33
4.1.3 並列逐點狀態回授 35
4.2 範例2 37
4.2.1 全狀態回授 40
4.2.2 逐點狀態回授 42
4.2.3 並列逐點狀態回授 44
第五章結論及未來展望 46
參考文獻 47
[1] W. Ray, Advanced Process Control. New York, NY, USA: McGrawHil, 1981.
[2] P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Boston, MA, USA: Birkhauser, 2012.
[3] H. Deng, H.X. Li, and G. Chen, “Spectral-approximation-based intelligent modeling for distributed thermal processes,” IEEE Transactions on Control Systems Technology, vol. 13, no. 5, pp. 686–700, Sep. 2005.
[4] R. Padhi and S. F. Ali, “An account of chronological developments in control of distributed parameter systems,” Annual Reviews in Control, vol. 33, no. 1, pp. 59–68, Apr. 2009.
[5] H.X. Li and C. Qi, SpatioTemporal Modeling of Nonlinear Distributed Parameter Systems: A Time/Space Separation Based Approach. NewYork, NY, USA: SpringerVerlag, 2011.
[6] Z. Lendek, T.M. Guerra, and J. Lauber, “Controller design for TS models using delayed nonquadratic Lyapunov functions,” IEEE Transactions on Cybernetics, vol. 45, no. 3, pp. 439–450, Jun. 2014.
[7] H. Zhou and H. Ying, “Deriving and analyzing analytical structures of a class of typical interval type2 TS fuzzy controllers,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2492–2503, Jun. 2016.
[8] B. Schörkhuber, T. Meurer, and A. Jüngel, “Flatness of Semilinear Parabolic PDEs—A Generalized Cauchy–Kowalevski Approach,” IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2277–2291, Mar. 2013.
[9] J.W. Wang, H.N. Wu, and H.X. Li, “Distributed proportional–spatial derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 3, pp. 927–938, Feb. 2012.
[10] H.N. Wu, J.W. Wang, and H.X. Li, “Exponential stabilization for a class of nonlinear parabolic PDE systems via fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 318–329, Oct. 2011.
[11] ——, “Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 642–652, Jun. 2013.
[12] G. Hagen, “Absolute stability via boundary control of a semilinear parabolic PDE,” IEEE transactions on automatic control, vol. 51, no. 3, pp. 489–493, Mar. 2006.
[13] J.W. Wang, “Dynamic boundary fuzzy control design of semilinear parabolic pde systems with spatially noncollocated discrete observation,” IEEE transactions on cybernetics, vol. 49, no. 8, pp. 3041–3051, Jun. 2018.
[14] B. Talaei, S. Jagannathan, and J. Singler, “Output feedback-based boundary
control of uncertain coupled semilinear parabolic PDE using neurodynamic programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1263–1274, Mar. 2017.
[15] I. Lasiecka, “Control of systems governed by partial differential equations: A historical perspective,” Proceedings of 34th IEEE Conference on Decision and Control, vol. 3, pp. 2792–2796, Dec. 1995.
[16] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, 2004.
[17] K. Zeng, N.Y. Zhang, and W.L. Xu, “A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators,” IEEE Transactions on fuzzy systems, vol. 8, no. 6, pp. 773–780, Dec. 2000.
[18] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEETransactionson System, Man, Cybernetics, vol. 15, no. 1, pp. 116–132, Feb. 1985.
[19] A. Sala and C. Ariño, “Polynomial fuzzy models for nonlinear control: A Taylor series approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284–1295, Aug. 2009.
[20] V. EstradaManzo, Z. Lendek, T. M. Guerra, and P. Pudlo, “Controller design for discrete-time descriptor models: a systematic LMI approach,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1608–1621, Nov. 2014.
[21] A.T. Nguyen, M. Sugeno, V. Campos, and M. Dambrine, “LMI-based stability analysis for piecewise multi-affine systems,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 3, pp. 707–714, May 2016.
[22] G. B. Koo, J. B. Park, and Y. H. Joo, “LMI condition for sampled-data fuzzy control of nonlinear systems,” Electronics Letters, vol. 51, no. 1, pp. 29–31, Jan. 2015.
[23] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A general purpose sum of squares programming solver,” Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746, Dec. 2002.
[24] J.C. Lo and C. Lin, “Polynomial fuzzy observed-state feedback stabilization via homogeneous Lyapunov methods,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 2873–2885, Dec. 2017.
[25] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911–922, Apr. 2009.
[26] H.K. Lam, “LMI-based stability analysis for fuzzy-model-based control systems using artificial T–S fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 505–513, May 2011.
[27] L. Wu, X. Su, P. Shi, and J. Qiu, “A new approach to stability analysis and stabilization of discrete-time TS fuzzy time-varying delay systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 273–286, Jul. 2010.
[28] S.H. Tsai and C.Y. Jen, “H∞ Stabilization for Polynomial Fuzzy TimeDelay System: A Sum-of-Squares Approach,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3630–3644, Dec. 2018.
[29] J.W. Wang and H.N. Wu, “Some extended Wirtinger’s inequalities and distributed proportional-spatial integral control of distributed parameter systems with multi-time delays,” Journal of the Franklin Institute, vol. 352, no. 10, pp. 4423–4445, Oct. 2015.
[30] ——, “Exponential pointwise stabilization of semilinear parabolic distributed parameter systems via the Takagi–Sugeno fuzzy PDE model,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 155–173, Dec. 2016.
[31] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
[32] V. Balakrishnan, “All about the Dirac Delta function (?),” Resonance, vol. 8, no. 8, pp. 48–88, 2003.
[33] J. P. Keener and J. Sneyd, Mathematical Physiology. New York, NY, USA: SpringerVerlag, 1998.
[34] C. Theodoropoulos, Y.H. Qian, and I. G. Kevrekidis, “‘Coarse’ stability and bifurcation analysis using timesteppers: A reactiondiffusion example,” Proceedings of the National Academy of Sciences, vol. 97, no. 18, pp. 9840–9843, Apr. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top