跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃佩涓
研究生(外文):Pei Chuan Huang
論文名稱:使用二氧化鈰及市售觸媒製備空氣電極於非質子型鋰空氣電池放電性能之研究
論文名稱(外文):Aprotic lithium-air battery performance using cerium oxide and commercial catalysts in air electrodes
指導教授:呂幸江
指導教授(外文):S. J. Lue
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:鋰空氣電池非質子系統陰極觸媒氧化石墨烯
外文關鍵詞:lithium-air batteryaprotic systemcathodecatalystgraphene oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討鋰空氣電池(lithium-air battery)在非質子系統下,使用市售觸媒及自製二氧化鈰觸媒,以鈕扣型電池進行測試,藉以改善鋰空氣電池的電化學性質,並使成本降低。
將觸媒噴塗於MPL碳布的碳纖維面、觸媒朝空氣側擺放與觸媒噴塗於MPL面上朝鋰金屬側擺放的兩種組態,發現觸媒朝空氣側的組裝方式電池充放電循環能力較佳,固定電容量為2000 mAh/g catalyst/C能達到10個循環。以此種組態使用不同市售陰極觸媒C、PtRu/C、FeCu/C、PdCeO2/C,發現PdCeO2/C的循環能力(9 cycle、190小時)、長效放電能力(146小時(29200 mAh/g))、阻抗(Rb 13.8 Ω、Rct 30.2 Ω)為所有觸媒中最佳,並且由XRD分析發現電池產物為Li2CO3。改變製作陰極時之烘烤溫度,發現溫度未達Nafion之Tg點(109 °C)充放電時Nafion會分解,使放電電壓不穩定,影響電池循環壽命。最後改變觸媒載體為CNT與GO,將CeO2合成於GO上,能達到8個循環(150小時),長效放電能力為55小時(11000 mAh/g)。
This research was base on coin cell, commercial catalyst, homemade catalyst, and an aprotic electrolyte. We use two kind of configuration, one is catalyst on MPL-catbon cloth carbon side and facing air side, another is catalyst on MPL-catbon cloth MPL side and facing Li-metal side. Catalyst on MPL-catbon cloth carbon side and facing air side can achieve better cycle number, 10 cycle in 2000 mAh/g catalyst. By using different commercial catalyst, C, PtRu/C, FeCu/C, and PdCeO2/C, we found PdCeO2/C’s cycle number (9 cycle, 190 hr), long-term discharge time (146 hr, 29200 mAh/g), resistance (Rb 13.8 Ω、Rct 30.2 Ω) is the best. The discharge product is Li2CO3. We changed different dring temperature and found Nafion is unstabitily under discharge if dring temperature below Tg 109 °C. Finally, we synthesized CeO2 with GO and CNT. CeO2/GO can achieve 8 cycle in 2000 mAh/g and long-term discharge time is 55 hr, 11000 mAh/g.
指導教授推薦書
口試委員審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 前言 ...........................................................................................1
第二章 文獻回顧 ...................................................................................2
2-1 儲能技術簡介 ........................................................................... 2
2-2 鋰空氣電池 ............................................................................... 5
2-3 非質子型鋰空氣電池結構..................................................... 10
2-3-1 非質子型鋰空氣電池電解液....................................... 11
2-3-2 非質子鋰空氣電池陰極介紹....................................... 17
2-3-3 非質子鋰空氣電池觸媒介紹....................................... 22
2-4 研究動機及目的.....................................................................29
第三章 實驗材料與方法.....................................................................30
3-1 實驗藥品與材料..................................................................... 30
3-2 儀器與設備 ............................................................................. 32
3-3 鋰空氣電池各組成前製備..................................................... 34
3-3-1 陰極觸媒製備............................................................... 34
3-3-2 空氣陰極製備............................................................... 34
3-3-3 非質子電解液製備....................................................... 35
3-4 電池封裝與測試..................................................................... 36
3-4-1 電池封裝....................................................................... 36
3-4-2 充放電測試................................................................... 37
3-4-3 電性測試....................................................................... 37
3-5 鋰空氣電池陰極分析............................................................. 37
3-5-1 穿透式電子顯微鏡(TEM)............................................ 37
3-5-2 場發掃描式電子檢微鏡(FE-SEM).............................. 37
3-5-3 熱重分析(TGA)............................................................ 37
3-5-4 X 射線繞射分析(XRD)................................................ 38
3-5-5 比表面積孔分析儀....................................................... 38
第四章 結果與討論 .............................................................................39
4-1 不同市售觸媒分析結果......................................................... 39
4-1-1 不同市售觸媒微結構分析........................................... 39
4-1-2 觸媒塗佈位置對電池性能的影響............................... 44
4-1-3 市售觸媒製備的鋰空氣電池之放電比較................... 47
4-1-4 不同熱處理對黏著劑交聯之影響............................... 56
4-2 CeO2在不同陰極碳材分析.................................................... 63
4-2-1 合成觸媒原料分析....................................................... 63
4-2-2 CeO2在不同陰極碳材微結構分析 ............................. 63
4-2-3 不同觸媒/碳材熱重分析.............................................. 64
4-2-4 不同碳材觸媒在碳布陰極之比較............................... 66
第五章 結論 .........................................................................................77
附錄 ..........................................................................................................78
參考文獻 ..................................................................................................80


圖目錄
Fig.2-1 各種形狀的電池(a)圓柱狀, (b)鈕扣型, (c)長方型, (d)帄板型[1]
..................................................................................................................... 2
Fig.2-2 電池種類與分類[2]....................................................................... 3
Fig.2-3 金屬空氣電池能量密度比較表[6]............................................... 4
Fig.2-4 四種鋰空氣電池系統裝置示意圖 (a)非質子系統 (b)水相系統
(c)混合系統 (d)固態系統[16] .................................................................. 6
Fig.2-5 非質子型鋰空氣電池結構示意圖.............................................. 11
Fig.2-6 循環伏安法結果(a) Li2O, (b) Li2O2, (c) Li2CO3[29].................. 11
Fig.2-7 理想非質子型陰極應有四種能力[10]....................................... 18
Fig.2-8 不同黏著劑化學結構[48]........................................................... 21
Fig.2-9 化學結構(a) Graphene, (b)GO(c)rGO[52].................................. 24
Fig.2-10 結構示意圖(a)SWCNT, (b)MWCNT[53]................................. 25
Fig.3-1 Nafion 化學結構[67]................................................................... 35
Fig.3-2 CR2032 coin cell 外觀................................................................. 36
Fig.3-3 鋰空氣電池組裝順序示意圖(A)觸媒朝鋰金屬, (B)觸媒朝空氣
................................................................................................................... 36
Fig.4-1 觸媒之 TEM 影像(a)C, (b)PtRu/C, (c)FeCu/C, (d) PdCeO2/C.. 39
Fig.4-2 觸媒噴塗於陰極上之 SEM 形貌(a)PtRu/C, (b) FeCu/C, (c)
PdCeO2/C.................................................................................................. 40
Fig.4-3 PtRu/C 電極之 EDS 結果 (a:元素分析,b:mapping 位置,c:
C 分佈,d:Pt 分佈,e:Ru 分佈) ....................................................... 41
Fig.4-4 FeCu/C 電極之 EDS 結果 (a:元素分析,b:mapping 位置,c:
C
分佈,d:Fe 分佈,e:Cu 分佈)....................................................... 42
Fig.4-5 PdCeO2/C 電極之 EDS 結果(a:元素分析,b:mapping 位置,
c:C 分佈,d:Ce 分佈,e:Pd 分佈,f:O 分佈)............................ 43
Fig.4-6 氮氣吸脫附曲線(a)C, (b)PtRu, (c) FeCu/C, (d) PdCeO2/C....... 44
Fig.4-7 不同觸媒塗佈位置之電池在 0.1 mA 電流下之循環充放電電壓
對時間曲線圖(PdCeO2/C(0.5mg/cm2-
catalyst/C),觸媒烘烤溫度為 80°C,
充放電時間 10 小時)............................................................................... 46
Fig.4-8 不同觸媒塗佈位置之電池在 0.1 mA 電流下之長期放電電壓對
時間曲線圖(PdCeO2/C(0.5mg/cm2-
catalyst/C),觸媒烘烤溫度為 80°C,
充放電時間 10 小時)............................................................................... 47
Fig.4-9 使用不同觸媒製備的鋰空氣電池在 0.1mA 循環充放電前之初
始阻抗圖(0.5mg/cm2-
catalyst/C,觸媒烘烤溫度為 80°C,充放電時間
10 小時).................................................................................................... 48
Fig.4-10 使用不同觸媒製備的鋰空氣電池在 0.1 mA 電流下循環充放
電之電壓對時間曲線圖(0.5mg/cm2-
catalyst/C,觸媒烘烤溫度為 80°C,
充放電時間各為 10 小時)....................................................................... 49
Fig.4-11使用不同觸媒製備的鋰空氣電池在0.1 mA電流下循環充放電
之電壓對電容量曲線圖(a)C(b)PtRu/C(c)FeCu/C(d)PdCeO2/C
(0.5mg/cm2-
catalyst/C,觸媒烘烤溫度為 80°C,充放電時間各為 10 小
時)............................................................................................................. 50
Fig.4-12 使用不同觸媒製備的鋰空氣電池之電壓對電流曲線圖
(0.5mg/cm2-
catalyst/C,觸媒烘烤溫度為 80°C).................................... 51
Fig.4-13 使用不同製備觸媒的鋰空氣電池之能量密度隨電流變化情形
(0.5mg/cm2-
catalyst/C,觸媒烘烤溫度為 80°C).................................... 51
Fig.4-14 使用不同製備觸媒的鋰空氣電池在 0.1 mA 電流下之長期放
電電壓對時間曲線圖(0.5mg/cm2
-catalyst/C,觸媒烘烤溫度為 80°C)52
Fig.4-15 陰極碳布碳纖維的 SEM 影像 ................................................. 53
Fig.4-16 不同觸媒陰極放電前的 SEM 影像(a)-(c)碳球, (d)-(f)PtRu/C,
(g)-(u)FeCu/C, (j)-(l) PdCeO2/C(0.5mg/cm2
-catalyst/C,觸媒烘烤溫度為
80°C)......................................................................................................... 53
Fig.4-17 不同觸媒陰極經過放電的 SEM 影像(a)-(c)碳球, (d)-(f)PtRu/C,
(g)-(u)FeCu/C, (j)-(l) PdCeO2/C (0.5mg/cm2
-catalyst/C,電流 0.1mA,觸
媒烘烤溫度為 80°C)................................................................................ 54
Fig.4-18 不同陰極觸媒 0.5mg/cm2
catalyst/C 經 0.1 mA 放電前的 XRD
表徵 .......................................................................................................... 55
Fig.4-19 不同陰極觸媒 0.5mg/cm2
catalyst/C 經 0.1 mA 放電終了的
XRD 表徵................................................................................................. 56
Fig.4-20 使用 80°C、120°C、140°C 熱處理之陰極於有機溶液 TEDGME
的溶出現象 .............................................................................................. 57
Fig.4-21 陰極烘烤溫度 80、120 與 140°C 所製得電池的初始阻抗(觸媒
為 0.5mg/cm2
PdCeO2/ C )....................................................................... 58
Fig.4-22 陰極烘烤溫度 80、120 與 140°C 所製得電池在 0.1mA 下循環
充放電壓對時間曲線(觸媒為 0.5mg/cm2
PdCeO2/ C ),充放電時間各為
10 小時).................................................................................................... 59
Fig.4-23 陰極烘烤溫度 80、120 與 140°C 所製得電池在 0.1mA 下循環
充放電電容量變化(觸媒為 0.5mg/cm2
PdCeO2/ C ),充放電時間各為
10 小時).................................................................................................... 59
Fig.4-24 陰極烘烤溫度 80、120 與 140°C 所製得電池在 0.1 mA 下長期
放電電壓對時間曲線(觸媒為 PdCeO2/ C )............................................ 60
Fig.4-25 陰極烘烤溫度 80、120 與 140°C 所製得電池在 0.2mA 下循環
放電電壓對時間曲線(觸媒為 0.5mg/cm2
PdCeO2/ C,充放電時間各為
10 小時).................................................................................................... 61
Fig.4-26 陰極烘烤溫度 80、120 與 140°C 所製得電池在 0.2mA 下長期
放電電壓對時間曲線(觸媒為 0.5mg/cm2
PdCeO2/ C) .......................... 62
Fig.4-27 合成 CeO2粉末 XRD 成分分析............................................... 63
Fig.4-28 碳材及 CeO2的形貌(a) GO, (b) CeO2/GO, (c)CNT, (d)
CeO2/CNT................................................................................................. 64
Fig.4-29 CeO2/碳材噴塗於碳布上之 SEM 影像(a) CeO2/GO, (b)
CeO2/CNT................................................................................................. 64
Fig.4- 30 觸媒與碳材的熱重損失(a) GO 與 CeO2/GO, (b) CNT 與
CeO2/CNT................................................................................................. 66
Fig.4-31 使用不同 CeO2/碳材製備的鋰空氣電池在 0.1mA 循環充放電
前之初始阻抗圖(0.5mg/cm2 CeO2/碳材,觸媒烘烤溫度為 140°C,充放
電時間 10 小時)....................................................................................... 67
Fig.4- 32 使用不同 CeO2/碳材製備的鋰空氣電池電壓對電流曲線圖
(0.5mg/cm2 CeO2/碳材,觸媒烘烤溫度為 140°C)................................ 68
Fig.4- 33 使用不同 CeO2/碳材製備的鋰空氣電池能量密度隨電流變化
情形(0.5mg/cm2 CeO2/碳材,觸媒烘烤溫度為 140°C)........................ 68
Fig.4-34 使用不同 CeO2/碳材製備的鋰空氣電池在 0.1mA 循環充放電
................................................................................................................... 69
Fig.4- 35 使用不同 CeO2/碳材製備的鋰空氣電池在 0.1mA 長期放電電
壓對時間曲線(0.5mg/cm2 CeO2/碳材,觸媒烘烤溫度為 140°C,充放電
時間 10 小時)........................................................................................... 70
Fig.4- 36 CeO2及碳材放電前的 SEM 影像(a)-(c)GO, (d)-(f) CeO2/ GO,
(g)-(u) CNT, (j)-(l) CeO2/CNT (0.5 mg/cm2-catalyst/C,觸媒烘烤溫度為
140°C)....................................................................................................... 71
Fig.4- 37 CeO2及碳材放電終了的 SEM 影像(a)-(c)GO, (d)-(f) CeO2/
GO, (g)-(u) CNT, (j)-(l) CeO2/CNT (0.5 mg/cm2-catalyst/C,觸媒烘烤溫
度為 140°C).............................................................................................. 72
Fig.4- 38 CeO2 /GO 0.1mA 放電終了產物的 SEM 影像....................... 73
Fig.4- 39 CeO2 /CNT 0.1mA 放電終了產物的 SEM 影像.................... 73
Fig.4- 40 不同 CeO2/碳材陰極放電前之 XRD 表徵 (0.5mg/cm2 CeO2/
碳材, 0.1 mA)表徵................................................................................... 74
Fig.4- 41 不同 CeO2/碳材陰極放電終了之 XRD 表徵(0.5mg/cm2 CeO2/
碳材, 0.1 mA)........................................................................................... 75
Fig.6-1 使用不同溫度熱處理之碳球於水之狀態 .................................78
Fig.6-2 使用不同溫度熱處理之碳球於 6M KOH 之狀態....................78
Fig.6-3 使用不同溫度熱處理之碳球於 1M LiCl 之狀態 .....................79


表目錄
Table 2-1 各金屬空氣電池比較[7] ........................................................... 4
Table 2-2 鋰離子固態陶瓷膜導電度及穩定度[24] ................................. 8
Table 2-3 四種鋰空氣電池系統比較表[25] ............................................. 9
Table 2-4 不同電解液物理性質[10] ....................................................... 13
Table 2-5 鋰空電池常用電解質優缺點[45] ........................................... 16
Table 2-6 鋰鹽比較表[46] ....................................................................... 17
Table 2-7 使用不同黏著劑放電表現比較表[48] ................................... 19
Table 2-8 觸媒促進 ORR 及 OER 能力................................................. 28
Table 4-1 不同觸媒比表面積.................................................................. 59
Table 4-2 不同觸媒比較表..................................................................... 91
[1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
[2] 工業技術研究院 (1998)。電池產業專題調查, 12-20。
[3] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy and Environmental Science, 4 (2011) 3243-3262.
[5] M.A. Rahman, X. Wang, C. Wenz, High energy density metal-air batteries: A review, Journal of the Electrochemical Society, 160 (2013) A1759-A1771.
[6] F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts, Chemical Society Reviews, 41 (2012) 2172-2192.
[7] Ru-Shi Liu. (2012). Electrochemical technologies for energy storage and conversion. Hoboken: Wiley. 227-239.
[8] K.J. Tsai, E.L. Littauer, Anodic Behavior of Lithium in Aqueous Electrolytes: I. Transient Passivation, Journal of the Electrochemical Society, 123 (1976) 771-776.
[9] K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, Journal of the Electrochemical Society, 143 (1996) 1-5.
[10] Z. Ma, X. Yuan, L. Li, Z.F. Ma, D.P. Wilkinson, L. Zhang, J. Zhang, A review of cathode materials and structures for rechargeable lithium-air batteries, Energy and Environmental Science, 8 (2015) 2144-2198.
[11] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, Journal of the American Chemical Society, 128 (2006) 1390-1393.
[12] Y. Sun, Lithium ion conducting membranes for lithium-air batteries, Nano Energy, 2 (2013) 801-816.
[13] A. Kraytsberg, Y. Ein-El, Review on Li–air batteries—Opportunities, limitations and perspective, Journal of Power Sources, 196 (2011) 886-893.
[14] A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries, Advanced Energy Materials, 5 (2015) 1401312.
[15] T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, A novel high energy density rechargeable lithium/air battery, Chemical Communications, 46 (2010) 1661-1663.
[16] B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries. A look into the future, Energy and Environmental Science, 4 (2011) 3287-3295.
[17] B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, Solvents critical role in nonaqueous Lithium-Oxygen battery electrochemistry, Journal of Physical Chemistry Letters, 2 (2011) 1161-1166.
[18] T. Zhang, N. Imanishi, Y. Takeda, O. Yamamoto, Aqueous lithium/air rechargeable batteries, Chemistry Letters, 40 (2011) 668-673.
[19] X. Ren, S.S. Zhang, D.T. Tran, J. Read, Oxygen reduction reaction catalyst on lithium/air battery discharge performance, Journal of Materials Chemistry, 21 (2011) 10118-10125.
[20] Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions, Journal of Power Sources, 195 (2010) 6187-6191.
[21] X. Zhu, T. Zhao, P. Tan, Z. Wei, M. Wu, A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode, Nano Energy, 26 (2016) 565-576.
[22] M. Illbeigi, A. Fazlali, M. Kazazi, A.H. Mohammadi, Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics, Solid State Ionics, 289 (2016) 180-187.
[23] P. He, T. Zhang, J. Jiang, H. Zhou, Lithium-air batteries with hybrid electrolytes, Journal of Physical Chemistry Letters, 7 (2016) 1267-1280.
[24] O. Yamamoto, N. Imanishi, Aqueous lithium-air batteries, Green Energy and Technology, 172(2015) 559-585.
[25] X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, L. An, A high-rate and long cycle life solid-state lithium-air battery, Energy and Environmental Science, 8 (2015) 3745-3754.
[26] F. Bardé, Y. Chen, L. Johnson, S. Schaltin, J. Fransaer, P.G. Bruce, Sulfone-based electrolytes for nonaqueous Li-O2 batteries, 118 (2014) 18892-18898.
[27] J. Lu, L. Li, J.B. Park, Y.K. Sun, F. Wu, K. Amine, Aprotic and aqueous Li-O2 batteries, Chemical Reviews, 114 (2014) 5611-5640.
[28] Y.C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries, Electrochemical and Solid-State Letters, 13 (2010) A69-A72.
[29] A.K. Thapa, K. Saimen, T. Ishihara, Pd/ MnO2 air electrode catalyst for rechargeable lithium/air battery, Electrochemical and Solid-State Letters, 13 (2010) A165-A167.
[30] H. Wang, K. Xie, Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li-O2 batteries, Electrochimica Acta, 64 (2012) 29-34.
[31] W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.G. Zhang, Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes, Journal of Power Sources, 196 (2011) 9631-9639.
[32] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes, Journal of the American Chemical Society, 133 (2011) 8040-8047.
[33] J. Wang, Y. Li, X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries, Nano Energy, 2 (2013) 443-467.
[34] C. Liang, F. Wang, Y. Xu, J. Chen, D. Liu, Z. Luo, A stable electrolyte makes a nonaqueous Li-O2 battery truly rechargeable, New Journal of Chemistry, 37 (2013) 2568-2572.
[35] D. Sharon, M. Afri, M. Noked, A. Garsuch, A.A. Frimer, D. Aurbach, Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen, Journal of Physical Chemistry Letters, 4 (2013) 3115-3119.
[36] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery, Journal of Physical Chemistry C, 114 (2010) 9178-9186.
[37] C.O. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Rechargeable lithium/TEGDME-LiPF6/O2 battery, Journal of the Electrochemical Society, 158 (2011) A302-A308.
[38] K.C. Möller, T. Hodal, W.K. Appel, M. Winter, J.O. Besenhard, Fluorinated organic solvents in electrolytes for lithium ion cells, Journal of Power Sources, 97-98 (2001) 595-597.
[39] V.S. Bryantsev, V. Giordani, W. Walker, J. Uddin, I. Lee, A.C.T. Van Duin, G.V. Chase, D. Addison, Investigation of fluorinated amides for solid-electrolyte interphase stabilization in Li-O2 batteries using amide-based electrolytes, Journal of Physical Chemistry C, 117 (2013) 11977-11988.
[40] F. De Giorgio, F. Soavi, M. Mastragostino, Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes, Electrochemistry Communications, 13 (2011) 1090-1093.
[41] C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries, Journal of Physical Chemistry C, 116 (2012) 20755-20764.
[42] G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells, Journal of Physical Chemistry Letters, 3 (2012) 1242-1247.
[43] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy and Environmental Science, 8 (2015) 1905-1922.
[44] X. Li, J. Huang, A. Faghri, A critical review of macroscopic modeling studies on LiO2 and Li–air batteries using organic electrolyte: Challenges and opportunities, Journal of Power Sources, 332 (2016) 420-446.
[45] Ilias Belharousk (2012). Lithium Ion Batteries - New Developments. Croatia: InTech.145-172.
[46] S.D. Beattie, D.M. Manolescu, S.L. Blair, High-capacity lithium-air cathodes, Journal of the Electrochemical Society, 156 (2009) A44-A47.
[47] E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, X.S. Li, J.G. Zhang, Stability of polymer binders in Li-O2 batteries, Journal of Power Sources, 243 (2013) 899-907.
[48] B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance, Carbon, 50 (2012) 727-733.
[49] Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery, Chem. Commun., 47 (2011) 9438-9440.
[50] D.Wittmaier, S. Aisenbrey, N. Wagner, K.A. Friedrich, Bifunctional, carbon-free nickel/cobalt-oxide cathodes for lithium-air batteries with an aqueous alkaline electrolyte, Electrochimica Acta,149 (2014) 355-363.
[51] C.S. Griggs, Victor F. Medina (2016). Graphene and graphene oxide membranes for water treatment. NewYork:McGraw Hill.1-10.
[52] R. Vidu, M. Rahman, M. Mahmoudi, M. Enachescu, T.D. Poteca, I. Opris, Nanostructures: A platform for brain repair and augmentation, Frontiers in Systems, Neuroscience, 8 (2014) 1-24.
[53] R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y. Shao-Horn, All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries, Energy and Environmental Science, 4 (2011) 2952-2958.
[54] Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, X. Sun, Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries, Electrochem. Commun., 13 (2011) 668-672.
[55] J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster, Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery, Journal of the Electrochemical Society, 150 (2003) A1351-A1356.
[56] S.R. Younesi, S. Urbonaite, F. Björefors, K. Edström, Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery, Journal of Power Sources, 196 (2011) 9835-9838.
[57] M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries l, Electrochimica Acta, 54 (2009) 7444-7451.
[58] M. Balaish, A. Kraytsberg, Y. Ein-Eli, A critical review on lithium-air battery electrolytes, Physical Chemistry Chemical Physics, 16 (2014) 2801-2822.
[59] L. Shi, A. Xu, T. Zhao, RuO2 monolayer: A promising bifunctional catalytic material for nonaqueous lithium-oxygen batteries, Journal of Physical Chemistry C, 120 (2016) 6356-6362.
[60] L. Li, A. Manthiram, Dual-electrolyte lithium-air batteries: Influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density, Journal of Materials Chemistry A, 1 (2013) 5121-5127.
[61] O. Oloniyo, S. Kumar, K. Scott, Performance of MnO2 crystallographic phases in rechargeable lithium-air oxygen cathode, Journal of Electronic Materials, 41 (2012) 921-927.
[62] X. Lin, L. Zhou, T. Huang, A. Yu, Cerium oxides as oxygen reduction catalysts for lithium-air batteries, International Journal of Electrochemical Science, 7 (2012) 9550-9559.
[63] S. Chen, L. Li, W. Hu, X. Huang, Q. Li, Y. Xu, Y. Zuo, G. Li, Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation, ACS Applied Materials and Interfaces, 7 (2015) 22999-23007.
[64] Y. Jiang, J. Cheng, L. Zou, X. Li, Y. Gong, B. Chi, J. Pu, J. Li, In-situ growth of CeO2 nanoparticles on N-doped reduced graphene oxide for anchoring Li2O2 formation in lithium-oxygen batteries, Electrochimica Acta, 210 (2016) 712-719.
[65] Y.C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, Journal of the American Chemical Society, 132 (2010) 12170-12171.
[66] F.A. Zakil, S.K. Kamarudin, S. Basri, Modified Nafion membranes for direct alcohol fuel cells: An overview, Renewable and Sustainable Energy Reviews, 65 (2016) 841-852.
[67] 湯景淳, 非質子型鋰空氣電池之有機電解液與陰極之設計研究。 長庚大學化工與材料工程研究所碩士論文, 台灣(2016)。
[68] 褚聖豪, 不同操作電流對非質子型鋰空氣一次和二次電池的性能影響。 長庚大學化工與材料工程研究所碩士論文, 台灣(2017)。
[69] Y.S. Jeong, J.B. Park, H.G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y.K. Sun, B. Scrosati, Y.J. Lee, Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries, Nano Letters, 15 (2015) 4261-4268.
[70] L.H. Sperling (2006). Introduction to Physical Polymer Science. Hoboken: Wiley. 363-423.
[71] S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 6 (2017) 1-18.
[72] 鄧力瑋, 以聚苯並咪唑/氧化石墨烯為電解質的鹼性直接醇類燃料電池開發。 長庚大學化工與材料工程研究所碩士論文, 台灣 (2016)。
[73] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D. Howard Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Analytical and Bioanalytical Chemistry, 396 (2010) 1003- 1014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊