[1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
[2] 工業技術研究院 (1998)。電池產業專題調查, 12-20。
[3] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy and Environmental Science, 4 (2011) 3243-3262.
[5] M.A. Rahman, X. Wang, C. Wenz, High energy density metal-air batteries: A review, Journal of the Electrochemical Society, 160 (2013) A1759-A1771.
[6] F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts, Chemical Society Reviews, 41 (2012) 2172-2192.
[7] Ru-Shi Liu. (2012). Electrochemical technologies for energy storage and conversion. Hoboken: Wiley. 227-239.
[8] K.J. Tsai, E.L. Littauer, Anodic Behavior of Lithium in Aqueous Electrolytes: I. Transient Passivation, Journal of the Electrochemical Society, 123 (1976) 771-776.
[9] K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, Journal of the Electrochemical Society, 143 (1996) 1-5.
[10] Z. Ma, X. Yuan, L. Li, Z.F. Ma, D.P. Wilkinson, L. Zhang, J. Zhang, A review of cathode materials and structures for rechargeable lithium-air batteries, Energy and Environmental Science, 8 (2015) 2144-2198.
[11] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, Journal of the American Chemical Society, 128 (2006) 1390-1393.
[12] Y. Sun, Lithium ion conducting membranes for lithium-air batteries, Nano Energy, 2 (2013) 801-816.
[13] A. Kraytsberg, Y. Ein-El, Review on Li–air batteries—Opportunities, limitations and perspective, Journal of Power Sources, 196 (2011) 886-893.
[14] A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries, Advanced Energy Materials, 5 (2015) 1401312.
[15] T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, A novel high energy density rechargeable lithium/air battery, Chemical Communications, 46 (2010) 1661-1663.
[16] B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries. A look into the future, Energy and Environmental Science, 4 (2011) 3287-3295.
[17] B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, A.C. Luntz, Solvents critical role in nonaqueous Lithium-Oxygen battery electrochemistry, Journal of Physical Chemistry Letters, 2 (2011) 1161-1166.
[18] T. Zhang, N. Imanishi, Y. Takeda, O. Yamamoto, Aqueous lithium/air rechargeable batteries, Chemistry Letters, 40 (2011) 668-673.
[19] X. Ren, S.S. Zhang, D.T. Tran, J. Read, Oxygen reduction reaction catalyst on lithium/air battery discharge performance, Journal of Materials Chemistry, 21 (2011) 10118-10125.
[20] Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions, Journal of Power Sources, 195 (2010) 6187-6191.
[21] X. Zhu, T. Zhao, P. Tan, Z. Wei, M. Wu, A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode, Nano Energy, 26 (2016) 565-576.
[22] M. Illbeigi, A. Fazlali, M. Kazazi, A.H. Mohammadi, Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics, Solid State Ionics, 289 (2016) 180-187.
[23] P. He, T. Zhang, J. Jiang, H. Zhou, Lithium-air batteries with hybrid electrolytes, Journal of Physical Chemistry Letters, 7 (2016) 1267-1280.
[24] O. Yamamoto, N. Imanishi, Aqueous lithium-air batteries, Green Energy and Technology, 172(2015) 559-585.
[25] X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, L. An, A high-rate and long cycle life solid-state lithium-air battery, Energy and Environmental Science, 8 (2015) 3745-3754.
[26] F. Bardé, Y. Chen, L. Johnson, S. Schaltin, J. Fransaer, P.G. Bruce, Sulfone-based electrolytes for nonaqueous Li-O2 batteries, 118 (2014) 18892-18898.
[27] J. Lu, L. Li, J.B. Park, Y.K. Sun, F. Wu, K. Amine, Aprotic and aqueous Li-O2 batteries, Chemical Reviews, 114 (2014) 5611-5640.
[28] Y.C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries, Electrochemical and Solid-State Letters, 13 (2010) A69-A72.
[29] A.K. Thapa, K. Saimen, T. Ishihara, Pd/ MnO2 air electrode catalyst for rechargeable lithium/air battery, Electrochemical and Solid-State Letters, 13 (2010) A165-A167.
[30] H. Wang, K. Xie, Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li-O2 batteries, Electrochimica Acta, 64 (2012) 29-34.
[31] W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.G. Zhang, Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes, Journal of Power Sources, 196 (2011) 9631-9639.
[32] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes, Journal of the American Chemical Society, 133 (2011) 8040-8047.
[33] J. Wang, Y. Li, X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries, Nano Energy, 2 (2013) 443-467.
[34] C. Liang, F. Wang, Y. Xu, J. Chen, D. Liu, Z. Luo, A stable electrolyte makes a nonaqueous Li-O2 battery truly rechargeable, New Journal of Chemistry, 37 (2013) 2568-2572.
[35] D. Sharon, M. Afri, M. Noked, A. Garsuch, A.A. Frimer, D. Aurbach, Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen, Journal of Physical Chemistry Letters, 4 (2013) 3115-3119.
[36] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery, Journal of Physical Chemistry C, 114 (2010) 9178-9186.
[37] C.O. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Rechargeable lithium/TEGDME-LiPF6/O2 battery, Journal of the Electrochemical Society, 158 (2011) A302-A308.
[38] K.C. Möller, T. Hodal, W.K. Appel, M. Winter, J.O. Besenhard, Fluorinated organic solvents in electrolytes for lithium ion cells, Journal of Power Sources, 97-98 (2001) 595-597.
[39] V.S. Bryantsev, V. Giordani, W. Walker, J. Uddin, I. Lee, A.C.T. Van Duin, G.V. Chase, D. Addison, Investigation of fluorinated amides for solid-electrolyte interphase stabilization in Li-O2 batteries using amide-based electrolytes, Journal of Physical Chemistry C, 117 (2013) 11977-11988.
[40] F. De Giorgio, F. Soavi, M. Mastragostino, Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes, Electrochemistry Communications, 13 (2011) 1090-1093.
[41] C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries, Journal of Physical Chemistry C, 116 (2012) 20755-20764.
[42] G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells, Journal of Physical Chemistry Letters, 3 (2012) 1242-1247.
[43] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy and Environmental Science, 8 (2015) 1905-1922.
[44] X. Li, J. Huang, A. Faghri, A critical review of macroscopic modeling studies on LiO2 and Li–air batteries using organic electrolyte: Challenges and opportunities, Journal of Power Sources, 332 (2016) 420-446.
[45] Ilias Belharousk (2012). Lithium Ion Batteries - New Developments. Croatia: InTech.145-172.
[46] S.D. Beattie, D.M. Manolescu, S.L. Blair, High-capacity lithium-air cathodes, Journal of the Electrochemical Society, 156 (2009) A44-A47.
[47] E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, X.S. Li, J.G. Zhang, Stability of polymer binders in Li-O2 batteries, Journal of Power Sources, 243 (2013) 899-907.
[48] B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance, Carbon, 50 (2012) 727-733.
[49] Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery, Chem. Commun., 47 (2011) 9438-9440.
[50] D.Wittmaier, S. Aisenbrey, N. Wagner, K.A. Friedrich, Bifunctional, carbon-free nickel/cobalt-oxide cathodes for lithium-air batteries with an aqueous alkaline electrolyte, Electrochimica Acta,149 (2014) 355-363.
[51] C.S. Griggs, Victor F. Medina (2016). Graphene and graphene oxide membranes for water treatment. NewYork:McGraw Hill.1-10.
[52] R. Vidu, M. Rahman, M. Mahmoudi, M. Enachescu, T.D. Poteca, I. Opris, Nanostructures: A platform for brain repair and augmentation, Frontiers in Systems, Neuroscience, 8 (2014) 1-24.
[53] R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y. Shao-Horn, All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries, Energy and Environmental Science, 4 (2011) 2952-2958.
[54] Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, X. Sun, Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries, Electrochem. Commun., 13 (2011) 668-672.
[55] J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster, Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery, Journal of the Electrochemical Society, 150 (2003) A1351-A1356.
[56] S.R. Younesi, S. Urbonaite, F. Björefors, K. Edström, Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery, Journal of Power Sources, 196 (2011) 9835-9838.
[57] M. Mirzaeian, P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries l, Electrochimica Acta, 54 (2009) 7444-7451.
[58] M. Balaish, A. Kraytsberg, Y. Ein-Eli, A critical review on lithium-air battery electrolytes, Physical Chemistry Chemical Physics, 16 (2014) 2801-2822.
[59] L. Shi, A. Xu, T. Zhao, RuO2 monolayer: A promising bifunctional catalytic material for nonaqueous lithium-oxygen batteries, Journal of Physical Chemistry C, 120 (2016) 6356-6362.
[60] L. Li, A. Manthiram, Dual-electrolyte lithium-air batteries: Influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density, Journal of Materials Chemistry A, 1 (2013) 5121-5127.
[61] O. Oloniyo, S. Kumar, K. Scott, Performance of MnO2 crystallographic phases in rechargeable lithium-air oxygen cathode, Journal of Electronic Materials, 41 (2012) 921-927.
[62] X. Lin, L. Zhou, T. Huang, A. Yu, Cerium oxides as oxygen reduction catalysts for lithium-air batteries, International Journal of Electrochemical Science, 7 (2012) 9550-9559.
[63] S. Chen, L. Li, W. Hu, X. Huang, Q. Li, Y. Xu, Y. Zuo, G. Li, Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation, ACS Applied Materials and Interfaces, 7 (2015) 22999-23007.
[64] Y. Jiang, J. Cheng, L. Zou, X. Li, Y. Gong, B. Chi, J. Pu, J. Li, In-situ growth of CeO2 nanoparticles on N-doped reduced graphene oxide for anchoring Li2O2 formation in lithium-oxygen batteries, Electrochimica Acta, 210 (2016) 712-719.
[65] Y.C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, Journal of the American Chemical Society, 132 (2010) 12170-12171.
[66] F.A. Zakil, S.K. Kamarudin, S. Basri, Modified Nafion membranes for direct alcohol fuel cells: An overview, Renewable and Sustainable Energy Reviews, 65 (2016) 841-852.
[67] 湯景淳, 非質子型鋰空氣電池之有機電解液與陰極之設計研究。 長庚大學化工與材料工程研究所碩士論文, 台灣(2016)。[68] 褚聖豪, 不同操作電流對非質子型鋰空氣一次和二次電池的性能影響。 長庚大學化工與材料工程研究所碩士論文, 台灣(2017)。[69] Y.S. Jeong, J.B. Park, H.G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y.K. Sun, B. Scrosati, Y.J. Lee, Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries, Nano Letters, 15 (2015) 4261-4268.
[70] L.H. Sperling (2006). Introduction to Physical Polymer Science. Hoboken: Wiley. 363-423.
[71] S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 6 (2017) 1-18.
[72] 鄧力瑋, 以聚苯並咪唑/氧化石墨烯為電解質的鹼性直接醇類燃料電池開發。 長庚大學化工與材料工程研究所碩士論文, 台灣 (2016)。[73] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D. Howard Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Analytical and Bioanalytical Chemistry, 396 (2010) 1003- 1014.