|
[1] D. G. Norton and D. G. Vlachos, "Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures." Chemical Engineering Science 58.21 (2003): 4871-4882. [2] D. G. Norton and D. G. Vlachos, "A CFD study of propane/air microflame stability." Combustion and Flame 138.1 (2004): 97-107. [3] H. Davy, "Some researches on flame." Philosophical Transactions of the Royal Society of London 107 (1817): 45-76. [4] Y. B. Zeldovich, "Theory of limit of quiet flame propagation." Zh. Prikl. Mekh. Tekh. Fiz 11.1 (1941): 159-169. [5] Mayer, E. "A theory of flame propagation limits due to heat loss." Combustion and Flame 1.4 (1957): 438-452. [6] Lewis, Bernard, and Guenther Von Elbe. Combustion, flames and explosions of gases. Academic Press, 1987. [7]Daou, J., and M. Matalon. "Flame propagation in Poiseuille flow under adiabatic conditions." Combustion and Flame 124.3 (2001): 337-349. [8] Daou, J., and M. Matalon. "Influence of conductive heat-losses on the propagation of premixed flames in channels." Combustion and Flame 128.4 (2002): 321-339. [9] Daou, J., J. Dold, and M. Matalon. "The thick flame asymptotic limit and Damköhler''s hypothesis." Combustion Theory and Modelling 6.1 (2002): 141-153. [10]Kotani, Y., Behbahani, H.F., and Takeno, T. " A flame-controlling continuation method for generating S-curve responses with detailed chemistry. ". Combust. Instit., 20 (1984), 2025–2033 [11].A. Lloyd and F. J. Weinberg, "A recirculating fluidized bed combustor for extended flow ranges." Combustion and Flame 27 (1976): 391-394. [12]T. TAKENO and K. SATO, "An excess enthalpy flame theory."Combustion Science and Technology 20.1-2 (1979): 73-84. [13]Weinberg, F.J, " On thermoelectric power conversion from heat recirculating combustion system. " Nature(1971), 233, 239. [14]P. D. Ronney, "Analysis of non-adiabatic heat-recirculating combustors."Combustion and Flame 135.4 (2003): 421-439. [15]Y. Ju and C. W. Choi, "An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels." Combustion and Flame133.4 (2003): 483-493. [16]Zamashchikov, V.V. " Experimental investigation of gas combustion regimes in narrow tubes. "Combust. Flame(1997), 108, 357. [17]Y. Ju and B. Xu, "Theoretical and experimental studies on mesoscale flame propagation and extinction." Proceedings of the Combustion Institute30.2 (2005): 2445-2453. [18]K. Maruta, T. Kataoka, N. I. Kim, S. Minaev and R. Fursenko, "Characteristics of combustion in a narrow channel with a temperature gradient." Proceedings of the Combustion Institute 30.2 (2005): 2429-2436. [19]F. Richecoeur and D. C. Kyritsis, "Experimental study of flame stabilization in low Reynolds and Dean number flows in curved mesoscale ducts." Proceedings of the Combustion Institute 30.2 (2005): 2419-2427. [20]Ju Y, Xu B. Effects of channel width and Lewis number on the multiple flame regimes and propagation limits in mesoscale. Combustion Science and Technology 2006: 178(10-11):1723-53 [21]D. A. Kessler and M. Short, "Ignition and transient dynamics of sub-limit premixed flames in microchannels." Combustion Theory and Modelling 12.5 (2008): 809-829. [22]Nakamura, Hisashi, et al. "Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel." Combustion and Flame 159.4 (2012): 1631-1643. [23] Kim, Nam, et al. "Development and scale effects of small Swiss-roll combustors." Proceedings of the Combustion Institute 31.2 (2007): 3243-3250. [24]K. H. Lee and O. C. Kwon, "A numerical study on structure of premixed methane–air microflames for micropower generation." Chemical engineering science 62.14 (2007): 3710-3719. [25]J. Li, S. K. Chou, Z. Li and W. Yang, "Development of 1D model for the analysis of heat transport in cylindrical micro combustors." Applied Thermal Engineering 29.8 (2009): 1854-1863. [26]Kaisare, N. S., and D. G. Vlachos. "Optimal reactor dimensions for homogeneous combustion in small channels." Catalysis Today 120.1 (2007): 96-106. [27]Aly, S.L. and Hermance, C.E., 1981, Two-dimensional theory of laminar quenching. Combustion and Flame, 40, 173–185. [28]Clavin, P., and F. A. Williams. "Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity." Journal of fluid mechanics 116.1 (1982): 251-282. [29]Lee, S.T. and J.S. T’ien. "Numerical analysis of flame flashback in a premixed laminar system. "Combustion and Flame(1982), 48, 273–285. [30]S.T. Lee, C.H. Tsai. "Numerical investigation of steady laminar flame propagation in circular tubes. " Combust. Flame 99 (1994) 484–490 [31]C. L. Hackert, J. L. Ellzey and O. A. Ezekoye, "Effects of thermal boundary conditions on flame shape and quenching in ducts." Combustion and Flame112.1 (1998): 73-84. [32]S. Chakraborty, A. Mukhopadhyay and S. Sen, "Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel." International Journal of Thermal Sciences 47.1 (2008): 84-92. [33]Kim, Nam Il, and Kaoru Maruta. "A numerical study on propagation of premixed flames in small tubes." Combustion and flame 146.1 (2006): 283-301. [34]Tsai, Chien-Hsiung. "The asymmetric behavior of steady laminar flame propagation in ducts." Combustion Science and Technology 180.3 (2008): 533-545.
|