跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許博涵
研究生(外文):Po-Han Hsu
論文名稱:天然氣價格風險值衡量
論文名稱(外文):Estimating Value-at-Risk of Natural Gas Price
指導教授:鍾惠民鍾惠民引用關係
指導教授(外文):Huimin Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:CARREGARCHGARCHGJR-GARCHLR test 風險值回朔測試
外文關鍵詞:CARREGARCHGARCHGJR-GARCHLR testValue at Risk
相關次數:
  • 被引用被引用:6
  • 點閱點閱:483
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本文使用歷史模擬法、GARCH、EGARCH、GJR-GARCH與CARR模型針對紐約商業交易所(New York Mercantile Exchange,NYMEX)天然氣商品(Natural Gas,NG)為研究對象,在誤差項分別假設為常態分配與t分配下計算其風險值,本文嘗試比較不同窗口長度和顯著水準下之模型特性;在模型評估方面,本文利用回朔測試,計算失敗次數、失敗比率,並以Christoffersen (1998)發展之Likelihood Ratio test 分別檢定未受條件限制下與受條件限制下之檢定統計量,衡量各模型績效。經過實証分析後發現,誤差項設定以常態分配較能準確評估天然氣期貨資產特性,失敗比率上五種模型都有不錯的表現,隨著顯著水準的降低,模型將趨於穩定,在LR test中以CARR與EGARCH模型表現較佳。
This paper use historical simulation approach, GARCH model, EGARCH model, GJR-GARCH model and CARR model, under different error term distribution hypothesis to estimate the Value at Risk of NYMEX Natural Gas price.
  We use different number of days and significant level to test our model and observe their performance. To value our model, we use back test, calculate failure frequency, failure ratio, and use Christoffersen’s Likelihood Ratio Test to test unconditional and conditional test statistic. According to our analysis, error term should be suppose to normal distribution, that can fit the NYMEX Natural Gas property. The model have good performance in failure ratio, as the significant level goes down, the model will be more stable, CARR and EGARCH model have better performance in LR Test.
目錄
第壹章、緒論……………………………………………………………1
 1.1 研究動機……………………………………………………………………1
  1.2 研究目的……………………………………………………………………1
1.3 研究架構……………………………………………………………………2
第貳章、文獻回顧………………………………………………………3
2.1 風險值定義…………………………………………………………………3
2.2 風險值估計方法……………………………………………………………3
2.3 模型檢定……………………………………………………………………6
第参章、研究方法………………………………………………………7
3.1 風險值計算…………………………………………………………………7
3.2 風險值模型…………………………………………………………………8
 3.2.1 歷史模擬法……………………………………………………………8
3.2.2 GARCH Model ………………………………………………………9
3.2.3 GJR-GARCH Model ………………………………………………11
3.2.4 EGARCH Model ……………………………………………………12
3.2.5 CARR Model ………………………………………………………13
3.3 風險值模型檢定 …………………………………………………………14
3.3.1 回朔測試 ……………………………………………………………14
3.3.2 失敗比率 ……………………………………………………………15
3.3.3 概似比率法 …………………………………………………………15
3.3.4 RMSE ………………………………………………………………17
第肆章、實證分析 ……………………………………………………19
4.1 資料來源與處理…………………………………………………………19
4.2 基本統計量與相關檢定……………………20
4.3 風險值估計……………………………………………22
第伍章、結論……………………………………………………34

參考文獻 ………………………………………………………………35
附錄一 天然氣價格直方圖……………………………………………37
附錄二 N=500,t-distribution,P&L和風險值走勢圖…………38
附錄三 N=250,t-distribution,P&L和風險值走勢圖…………40
附錄四 N=500,Normal distribution,風險值穿透圖…………42
附錄五 N=500,波動度圖形預測圖………………………………43
附錄六 N=500,t-distribution參數估計………………………45
參考文獻
Alexander, C.O. and C.T. Leigh (1997). “On the Covariance Matrices Used   
  in Value-at-Risk Models,”Journal of Derivatives, 4, pp.50-62.
Berkowitz, J. and J. O’brien (2002). “How Accurate Are Value-at-Risk  
  Models at Commercial Banks?” Journal of Finance, Vol.57, No.3.  
  pp.1093-1111.
Bollerslev, T. (1986). “Generalized autoregressive conditional
  heteroskedasticity, ”Journal of Econometrics, 31, pp.34-105.
Chou, R. (2002), “Forecasting financial volatilities with extreme values: the
Conditional AutoRegressive Range(CARR) Model, ” Working paper, The
institute of Economics Academia Sinica, Taiwan.
Christoffersen, P. (1998), “Evaluating interval forecasts,”
  International Economic Review, 39, pp.841-862.
Christoffersen, P., J. Hahn, and A. Ionue (2001), “Testing and comparing
  Value-at-Risk measures,” Journal of Empirical Finance, 8, pp.325-342.
Duffie, D., and Pan, J. (1997),“An overview of Value-at-Risk,” Journal   
  of Derivatives, 4:3, pp.7-49.
Engle, R.F. (1982),“Autoregressive conditional heteroscadicity with
  estimates of the variance of U.K.inflation,”Econometrica, 50,
  pp.987-1008.
Glosten, L., Jagannathan, R., & Runkle, D. (1993). “On the relation between the
expected value and the volatility on the nominal excess returns on stocks, ”


Journal of Finance, 19, pp.3-29.
Goorbergh, R.V.D., and Vlaar, P. (1999), “Value-at-Risk analysis of stock
  returns historical simulation, variance techniques or tail index
  estimation?” Working paper.
Hendricks, Darryll (1996), “Evaluation of Value-at-Risk Models Using Historical
Data, ” Federal Reserve Bank of New York Economic Policy Review, 2(1),
pp36-69.
Hull, J. (2002), Fundamentals of futures and options markets, Pearson Education, N.J.
Hull, J. and White, A. (1998), “Value-at-Risk when daily changes in market
  variables are not normal distributed,” Journal of Derivatives, 5, 
  pp.9-19.
Jorion, P. (2000), Value-at-Risk: The Benchmark for Controlling Market,
  2nd edition, McGraw-Hill, N.Y.
Kupiec, P.H. (1995), “Techniques for verifying the accuracy of risk  
  measurement models,” Journal of Derivatives,2, pp.73-84.
Meese,R.A. (1986),“ Testing for bubbles in exchange markets: a case of
  sparking rates?” Journal of Political Economy,94, pp.345-373.
Nelson, D. (1991). “ Conditional heteroskedasticity in asset returns. ” a new
approach, Econometrica, 59, pp.347-370.
Parkinson, M.(1980), “The extreme value for estimating the variance of the rate of
return, ” Journal of Business,53, pp.61-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊