跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥谷
研究生(外文):Lin, Yenku
論文名稱:修正型比例積分順向微分控制器之直流-交流換流器的研製
論文名稱(外文):Design and Implementation of Modified Proportional Integral Derivative Controller with Differential Forward for DC-AC Inverters
指導教授:張恩誌
指導教授(外文):Chang, Enchih
口試委員:陳野正仁梁從主張恩誌
口試委員(外文):Masahito JinnoLiang, TsorngjuuChang, Enchih
口試日期:2013-01-11
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:比例積分順向微分控制器輸出訊號擾動修正型比例積分順向微分控制器直流–交流換流器總諧波失真
外文關鍵詞:Differential forward PID (DFPID) controllerdisturbance of output signalModified differential forward PID (MDFPID) controllerDC-AC invertertotal harmonic distortion
相關次數:
  • 被引用被引用:5
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
比例積分順向微分控制器因架構簡單與有好的動態特性,被廣泛應用於直流–交流換流器之控制。然而,傳統比例積分順向微分控制器難以抑制輸出訊號之擾動,因此造成換流器性能惡化。為了抑制輸出訊號的擾動與增強系統的強健性,本論文提出修正型比例積分順向微分控制器,然後應用於直流–交流換流器,使得在線性與非線性之負載條件下,可達到低總諧波失真與快速動態響應。修正型比例積分順向微分控制器除了保有傳統比例積分順向微分控制器架構簡單與有好的動態特性之優點外,其控制參數調整容易以及抑制輸出訊號擾動明顯。為了驗證所提出控制器的有效性,本論文以Psim軟體來模擬所提出的換流器,而實作以數位訊號處理器為基礎的控制器來控制換流器,使得在非線性負載狀況下,有高品質的交流輸出電壓。
Due to simple structure and good dynamic property, Differential forward PID (DFPID) controller is widely used in DC-AC inverters control. However, the conventional DFPID controller is difficult to inhibit the disturbance of output signal, thus causing the deterioration of the inverter performance. In order to inhibit the disturbance of output signal and enhance the system robustness, a modified differential forward PID (MDFPID) controller for the DC-AC inverter design is proposed in this thesis. The performances of the DC-AC output are low total harmonic distortion, and fast dynamic response under linear and non-linear loading. In addition to retaining the advantages of simple structure and good dynamic property as the conventional DFPID controller, the MDFPID controller has also allowed easy adjustment of control parameters and significant inhibition of disturbance of output signal. To verify the effectiveness of this proposed controller, the Psim software is used to simulate the inverter and the experiment is also realized with digital signal processor. Finally, a high-quality AC output voltage can be obtained under non-linear loading.
中文摘要…………………………………………………………………………i
英文摘要…………………………………………………………………………ii
目錄………………………………………………………………………………iv
圖目錄……………………………………………………………………………vi
表目錄……………………………………………………………………………ix
第一章 緒論………………………………………………………………………1
1.1 研究背景與動機……………………………………………………………1
1.2 論文大綱……………………………………………………………………3
第二章 比例積分順向微分控制器………………………………………………4
2.1 比例積分微分控制器………………………………………………………4
2.2 比例積分順向微分控制器…………………………………………………7
第三章 修正型比例積分順向微分控制器………………………………………9
3.1 修正型比例積分順向微分控制器之設計…………………………………9
3.2 控制參數之設計……………………………………………………………10
第四章 功率因數修正電路與全橋換流器……………………………………13
4.1 功率因數修正………………………………………………………………13
4.2 功率因數修正電路…………………………………………………………18
4.3 電流控制模式………………………………………………………………21
4.4 換流器電路…………………………………………………………………23
第五章 電路模擬與硬體實作…………………………………………………24
5.1 以UC3854為核心之升壓型功率因數修正電路……………………………24
5.2 升壓型功率因數修正電路硬體實作………………………………………31
5.3 換流器電路之設計…………………………………………………………34
5.4 全橋式換流器電路之硬體實作與結果比較………………………………47
第六章 結論與未來研究方向…………………………………………………53
6.1 結論…………………………………………………………………………53
6.2 未來研究方向………………………………………………………………53
參考文獻…………………………………………………………………………54
圖目錄
圖1.1 不斷電系統之基本電路架構…………………………………………………1
圖2.1 典型比例積分微分控制器之架構……………………………………………4
圖2.2 比例積分順向微分控制器系統………………………………………………7
圖3.1 修正型比例積分順向微分控制器系統………………………………………9
圖4.1 交流-直流整流電路…………………………………………………………12
圖4.2 電感性負載,電流落後電壓…………………………………………………13
圖4.3 電容性負載,電流領先電壓…………………………………………………14
圖4.4 電感性負載,電流落後電壓…………………………………………………14
圖4.5 電容性負載,電流領先電壓…………………………………………………14
圖4.6 典型之整流器與電容器電路…………………………………………………14
圖4.7 具有失真輸入電壓與輸出電流波形…………………………………………15
圖4.8 全波整流電路…………………………………………………………………17
圖4.9 典型LCR被動式功率因數修正器……………………………………………18
圖4.10 升壓型功率因數修正電路…………………………………………………19
圖4.11 脈波寬度調變控制電路之內部構造………………………………………19
圖4.12 全橋式換流器之電路架構…………………………………………………22
圖5.1 UC3854功能方塊圖……………………………………………………………23
圖5.2 UC3854電路圖……………………………………………………………….24
圖5.3 以UC3854為核心之升壓型功率因數修正電路之模擬圖……………………29
圖5.4 輸出電壓模擬波形……………………………………………………………29
圖5.5 輸出電流模擬波形……………………………………………………………29
圖5.6 電感電流波形…………………………………………………………………30
圖5.7 升壓型功率因數修正電路……………………………………………………31
圖5.8 升壓型功率因數修正電路之功率電感………………………………………31
圖5.9 開關之閘極驅動訊號vgs與汲-源極電壓vds………………………………32
圖5.10 開關之閘極驅動訊號vgs與輸出二極體之電壓vdo………………………33
圖5.11 輸出電壓Vo與輸出電流Io…………………………………………………33
圖5.12 具有迴授控制之全橋式換流器的電路架構………………………………34
圖5.13 輸出電壓偵測電路…………………………………………………………35
圖5.14 差分放大器…………………………………………………………………36
圖5.15 正向半波整流電路…………………………………………………………36
圖5.16 反向半波整流電路…………………………………………………………36
圖5.17 微分器………………………………………………………………………38
圖5.18 加法器………………………………………………………………………38
圖5.19 正弦波脈波寬度調變之雙電壓極性切換…………………………………39
圖5.20 正弦波脈波寬度調變之單電壓極性切換…………………………………40
圖5.21 低損失單電壓極性切換……………………………………………………41
圖5.22 低損失單電壓極性切換之開關切換訊號…………………………………41
圖5.23 換流器電路架構模擬圖……………………………………………………42
圖5.24 傳統比例積分順向微分控制電路模擬圖…………………………………43
圖5.25 修正型比例積分順向微分控制電路模擬圖………………………………43
圖5.26 正半週開關之模擬驅動訊號………………………………………………44
圖5.27 負半週開關之模擬驅動訊號………………………………………………44
圖5.28 傳統控制器在額定負載下的輸出電壓模擬波形…………………………44
圖5.29 傳統控制器在額定負載下的輸出電流模擬波形…………………………44
圖5.30 修正型控制器在額定負載下的輸出電壓模擬波形………………………45
圖5.31 修正型控制器在額定負載下的輸出電流模擬波形………………………45
圖5.32 傳統控制器在整流型負載下的輸出電壓模擬波形………………………45
圖5.33 傳統控制器在整流型負載下的輸出電流模擬波形………………………45
圖5.34 修正型控制器在整流型負載下的輸出電壓模擬波形……………………46
圖5.35 修正型控制器在整流型負載下的輸出電流模擬波形.……………………46
圖5.36 傳統控制器在Triac負載(從無載到滿載)下的輸出電壓模擬波形………46
圖5.37 傳統控制器在Triac負載(從無載到滿載)下的輸出電流模擬波形………46
圖5.38 修正型控制器在Triac負載(從無載到滿載)下的輸出電壓模擬波形……47
圖5.39 修正型控制器在Triac負載(從無載到滿載)下的輸出電流模擬波形……47
圖5.40 換流器電路…………………………………………………………………49
圖5.41 正半週開關之實測閘極驅動訊號…………………………………………49
圖5.42 負半週開關之實測閘極驅動訊號…………………………………………49
圖5.43 濾波器兩端之電壓vAB實測波形……………………………………………50
圖5.44 傳統比例積分順向微分控制器在額定負載下的輸出電壓與電流波形…50
圖5.45 修正型比例積分順向微分控制器在額定負載下的輸出電壓與電流波…51
圖5.46 傳統比例積分順向微分控制器在Triac負載(從無載到滿載)下的輸出電壓與電流波形…51
圖5.47 修正型比例積分順向微分控制器在Triac負載(從無載到滿載)下的輸出電壓與電流波形…51
圖5.48 傳統比例積分順向微分控制器在整流型負載下的輸出電壓與電流波………………………51
圖5.49 修正型比例積分順向微分控制器在整流型負載下的輸出電壓與電流波形…………………52
表目錄
表5.1 升壓型主動式功率因數修正器之電氣規格表……………………………28
表5.2 UC3854之控制電路參數……………………………………………………28
表5.3 升壓型功率因數電路之元件規格表………………………………………30
表5.4 升壓型功率因數修正電路之實測數據……………………………………32
表5.5 低損失單電壓極性切換之開關切換規則…………………………………40
表5.6 換流器系統參數與控制參數………………………………………………47
表5.7 換流器電路之元件規格表…………………………………………………47
表5.8 電壓總諧波失真率與電壓回復時間………………………………………50
[1] 鄭振東,不斷電電源裝置技術UPS,建興出版社,民國83年5月。
[2] W. Jiang, J. Brunet, and B. Fahimi, “Application of active current sharing control in fuel cell-battery off-line UPS system,” IEEE Power Electronics Specialists Conference, pp. 796-801.
[3] M. A. Abusara, and S. M. Sharkh, “Control of line interactive UPS systems in a Microgrid,” IEEE International Symposium on Industrial Electronics, pp. 1433-1440, 2011.
[4] Z. H. Zhang, Y. G. Xin, and W. C. Zhang, “A novel PWM rectifier control technique for on-line UPS under unbalanced load based on DSP,” in Proc. of IEEE Control Conference, pp. 695-699, 2008.
[5] M. Nagahara, and Y. Yamamoto, “Robust repetitive control by Sampled-data H∞ filters,” in Proceedings of the 48th IEEE Conference on Decision and Control, pp. 8136-8141, 2009.
[6] G. F. Teng, G. C. Xiao, Z. Zeng, Z. H. Ye, F. Zhuo, and Z. A. Wang, “A digital control strategy based on repetitive and multi-loop control for an active voltage quality regulator,” International Power Electronics Conference, pp. 2656-2662, 2010.
[7] C. Y. Lin, “Neural network adaptive control and repetitive control for high performance precision motion control,” in Proc. of SICE Annual Conference, pp. 2843-2844, 2010.
[8] Y. X. Song, J. l. Ma, H. X. Zhang, and N. B. He, “Digital implementation of neural network inverse control for induction motor based on DSP,” International Conference on Future Computer and Communication, vol. 1, pp. V1-174-V1-178, 2010.
[9] S. Hamasaki, T. Kusaba, Y. Mazaki, and M. Tsuji, “A novel method for active filter applying the deadbeat control and the repetitive control,” International Conference on Electrical Machines and Systems, pp. 1-6, 2009.
[10] T. L. Tiang, and D. Ishak, “Deadbeat-based PI controller for stand-alone single phase voltage source inverter using battery cell as primary sources,” IEEE First Conference on Clean Energy and Technology, pp. 87-92, 2011.
[11] K. Astrom, and T. Hagglund, PID Controllers: Theory, Design, and Tuning, Research Triangle Park, NC: Instrument Society of America, 1995.
[12] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Transactions on Control Systems Technology, vol. 13, pp. 559-576, 2005.
[13] 劉金琨,先進PID控制及其MATLAB仿真,電子工業出版社,2003年1月。
[14] H. Zhang, and L. Zhen, “On networked control systems based on smith compensator,” in Proc. of the 30th Chinese Control Conference, pp. 4731-4734, 2011.
[15] J. Dai, S. N. Wang, C. J. Chang, J. Liu, and M. Shao, “Design on control system of high precision micro-displacement platform,” in Proceedings of International Conference on Modelling, Identification & Control, pp. 1074-1079, 2012.
[16] S. Skoczowski, S. Domek, K. Pietrusewicz, and B. Broel-Plater, “A method for improving the robustness of PID control,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 1669-1676, 2005.
[17] 沈金鐘,PID控制器:理論、調整與實現,滄海書局,中華民國90年8月。
[18] J. Kedarisetti, and P. Mutschler, “Efficiency comparison between motor friendly hard and soft switching inverters,” in Proc. of the 14th European Conference on Power Electronics and Applications, pp. 1-10, 2011.
[19] Z. M. Ye, P. K. Jain, and P. C. Sen, “A full-bridge resonant inverter with modified phase-shift modulation for high-frequency AC power distribution systems,” IEEE Transactions on Industrial Electronics, vol. 54, pp. 2831-2854, 2007.
[20] N. Yongyuth, P. Viriya, and K. Matsuse, “Analysis of a full-bridge inverter for induction heating using asymmetrical phase-shift control under ZVS and NON-ZVS operation,” in Proc. of the 7th International Conference on Power Electronics and Drive Systems, pp. 476-482, 2007.
[21] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd edition, New York: John Wiley & Sons Inc., 2003.
[22] F. F. Mazda, “Power Electronics Handbook,” Butterworth & Co. Ltd, 1990.
[23] Z. Bing, M. Chen, S. K. T. Miler, Y. Nishida, and J. Sun, “Recent developments in single-phase power factor correction,” in Proc. of Power Conversion Conference, pp. 1520-1526, 2007.
[24] W. Wolfle, W. G. Hurley, and S. Arnold, “Power factor correction for AC-DC converters with cost effective inductive filtering,” in Proc. of IEEE Power Electronics Specialists Conference, vol. 1, pp. 332-337, 2000.
[25] W. M. Lin, M. M. Hernando, A. Fernandez, J. Sebastian, and P. J. Villegas, “A new topology for passive PFC circuit design to allow AC-to-DC converters to comply with the new version of IEC1000-3-2 regulations,” in Proc. of IEEE PESC, vol. 4, pp. 2050-2055, 2002.
[26] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. of IEEE INTELEC, pp. 571-578, 1997.
[27] K. Billings, and T. Morey, Switchmode Power Supply Handbook 3/E, New York: McGraw-Hill, 2009.
[28] M. F. Schlecht, and B. A. Miwa, “Active power factor correction for switching power supplies,” IEEE Trans. on Power Electronics, vol. PE-2, pp. 273-281, 1987.
[29] K. Taniguchi, and Y. Nakaya, “Analysis and improvement of input current waveforms for discontinuous-mode boost converter with unity power factor,” in Proc. of IEEE International Conference on Power Conversion, vol. 1, pp. 399-404, 1997.
[30] J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. of IEEE APEC, pp. 267-273, 1993.
[31] A. Pressman, K. Billings, and T. Morey, Switching Power Supply Design, 3rd Edition, New York: McGraw-Hill, 2010.
[32] UC3854N Datasheet, “http://www.ti.com/lit/ds/symlink/uc3854.pdf”。
[33] P. C. Todo, “UC3854 controlled power factor correction circuit design,” in Unitrode Product & Applications Handbook, pp. 9-362-9-38, 1993.
[34] Powersim, “Tutorial - boost PFC converter control loop design,” Powersim Inc.,France, 2010.
[35] 林肇彬,活用運算放大器的訣竅100,建興文化事業有限公司,2003年10月。
[36] 陳彥光,“以 DSP 為控制單元具USB2.0 傳輸介面之UPS”,國立中山大學碩士論文,民國92年。
[37] 詹忠穎,“電容電流磁滯控制應用於單相雙口網路昇降壓換流器”,南台科技大學碩士論文,民國97年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊