|  | 
[1] A. A. Orouji and M. J. Kumar, “Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: a comprehensive study,” IEEE Trans. Device and Material reliability, vol. 6, no. 2, pp. 315-325, 2006.[2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001.
 [3] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE transactions on electron devices, vol. 33, pp. 477-481, 1986.
 [4] K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, vol. 69, pp. 1703-1706, 1991.
 [5] T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett., vol. 13, pp. 309-311, 1992.
 [6] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser
 annealing method for large area electronics,” IEDM Tech. Dig, vol. 91, pp. 563-566, 1991.
 [7] Matsueda, Yojiro; Park, Yong-Sung; Choi, Sang-Moo; Chung, Ho-Kyoon, “Trend of system on panel” Proceedings of the 5th International Meeting on Information Display, pp. 841-844, 2006.
 [8] Wang, Hongmei ;Chan, Mansun; Jagar, Singh; Wang, Yangyuan; Ko, Ping K.,“Submicron super TFTs for 3-D VLSI applications” IEEE Electron Device Letters, v 21, n 9, pp. 391-393, 2000.
 [9] J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric,” IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2067–2072, Oct. 2003.
 [10] B. D. Salvo, C. Gerardi, R. V. Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, T. Serafino, G. Ammendola, M. V. Duuren, P. Goarin, W. Y. Mei, K. V. D. Jeugd, H. Baron, M. Gely, P. Mur, and S. Deleonibus, “Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS),” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 377–389, Sep. 2004.
 [11] J. H. Kim and J. B. Choi, “Long-term electron leakage mechanisms through ONO interpoly dielectric in stacked-gate EEPROM cells,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2048–2053, Dec. 2004.
 [12] C. Hu, “Lucky-electron model of channel hot electron emission”, IEDM, vol. 25, pp.22-25, 1979.
 [13] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, 1964.
 [14] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” IEEE Trans. Electron Devices, vol. 15, pp. 686-686, 1968.
 [15] K.T. San, C. Kaya, and T.P. Ma, “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions, vol 42, no. 1, pp. 150-159, Jan. 1995.
 [16] W. J. Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, C. C. Liu, C. H. Chen, T. H. Wang, S. Pan, and C. Y. Lu, “Cause of Data Retention Loss in a Nitride-Based Localized Trapping Storage Flash Memory Cell,” Reliability Physics Symposium Proceedings, pp. 34~38, 2002.
 [17] S. S. Chung, P. Y. Chiang, G. Chou, C. T. Huang, P. Chen, C. H. Chu, C. C. H. Hsu, “A novel Leakage Current Separation Technique in a Direct Tunneling Regime Gate Oxide SONOS Memory Cell,” IEDM Tech. Digest, session 26.6, 2003.
 [18] K. Naruke, S. Taguchi, and M. Wada, “Stress Induced Leakage Current Limiting to Scale Down EEPROM Tunnel Oxide Thickness”, IEDM Tech. Dig., pp. 424-427, 1988.
 [19] M. H. White, J. W. Dzimianski, M. C. Peckerar, “Endurance of Thin-Oxide Nonvolatile MNOS Memory Transistors,” IEEE Trans. Electron Devices, vol. 24, pp. 577-580, 1977.
 [20] T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., no. 43, pp. 701-705, 1996.
 [21] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in VLSI Symp. Circuit. Dig., pp. 85–90, 2001.
 [22] T.Nishibe and H.Nakamura, “Value-added circuit and function integration for SOG (system-on glass) based on LTPS technology,” in Proc. SID, pp. 1091–1094, 2006.
 [23] C. S. Tan, W. T. Sun, S. H. Lu, C. H. Kuo, I. T. Chang, S. H. Yeh, C. C. Chen, L. Liu, Y. C. Lin, and C. S. Yang, “A simple architecture for fully integrated poly-Si
 TFT-LCD,” in Proc. SID, pp. 336–339, 2005.
 [24] J. H. Kim, I. W. Cho, G. J. Bae, and I. S. Park, “Highly manufacturable SONOS non-volatile memory for the embedded SoC solution,” in VLSI Symp. Tech. Dig., pp. 31–32, 2003.
 [25] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET's,” IEEE Trans. Electron Devices, vol. 40, pp. 2326-2329, Dec. 1993.
 [26] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and R. Chau., “High Performance Fully-Depleted Tri-Gate CMOS Transistors ,”IEEE Trans. Electron Device Lett., vol. 24, pp. 263-265, Apr., 2003.
 [27] N.Lindert, L Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu., “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Trans. Electron Device Lett., vol. 22, pp. 487-489, Oct., 2001.
 [28] S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T. Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAM's,” IEEE Trans. Electron Devices, vol. 46, pp. 1693-1698, Aug. 1999.
 [29] L. Chang, S. Tang, T. J. King, J. Bokor, and Chenming Hu, “Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs,” IEDM Tech. Digest, session 31.2, 2000.
 [30] H. S. P Wong, D. J. Frank, P. M. Solomon, “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation,” IEDM Tech. Digest, session 15.2, 1998.
 [31] E. J. Nowak, I. Aller, T. Ludwig, K. Kim, R. V. Joshi, C. T. Chuang, K. Bernstein, R. Puri, ‘Turning silicon on its edge,” IEEE Circuits and Devices Magazine, pp. 20-31, 2004.
 [32] H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, J. J. Welser, “Nanoscale CMOS,” Proc. IEEE, vol.87, pp. 537, 1999.
 [33] M. H. White, Y. Yang, P. Ansha, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol. 20, no. 2, pp. 190–195, Jun. 1997.
 [34] M. French, H. Sathianathan, and M. White, “A SONOS nonvolatile memory cell for semiconductor disk application,” in Proc. IEEE Nonvolatile Memory Technol. Rev., pp. 70–73, 1993.
 [35] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22–31, Jul. 2000.
 [36] S. Mori, Y. Y. Araki, M. Sato, H. Meguro, H. Tsunoda, E. Kamiya, K. Yoshikawa, N. Arai, and E. Sakagami, “Thickness scaling limitation factors of ONO interpoly dielectric for nonvolatile memory devices,” IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 47–53, Jan. 1996.
 [37] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” in IEDM Tech. Dig., pp. 613–616, 2003.
 [38] C. H. Lee, J. Choi, C. Kang, Y. Shin, J. S. Lee, J. Sel, J. Sim, S. Jeon, B. I. Choe, D. Bae, K. Park, and K. Kim, “Multi-level NAND flash memory with 63 nm-node TANOS (Si−Oxide−SiN−Al2O3−TaN) cell structure,” in VLSI Symp. Tech. Dig., pp. 21–22, 2006.
 [39] Y. Park, J. Choi, C. Kang, C. Lee, Y. Shin, B. Choi, J. Kim, S. Jeon, J. Sel, J. Park, K. Choi, T. Yoo, J. Sim, and K. Kim, “Highly manufacturable 32-Gb multi-level NAND flash memory with 0.0098 μm2 cell size using TANOS (Si−Oxide−Al2O3−TaN) cell technology,” in IEDM Tech. Dig., pp. 29–32, 2006.
 [40] Chang-Hyun Lee, Sung-Hoi Hur, You-Cheol Shin, Jeong-Hyuk Choi, Dong-Gun Park, and Kinam Kim, “Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory,” in Appl. Phys. Lett., 86, 152908, 2005.
 [41] Sanghun Jeon, Jeong Hee Han, Junghoon Lee, Sangmoo Choi, Hyunsang Hwang, and Chungwoo Kim, “Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler–Nordheim P/E Mode,” in IEEE Electron Device Lett., vol. 27, no. 6, JUNE 2006.
 [42] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2 /SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect,” in Appl. Phys. Lett. 87, 073510, 2005.
 [43] Sung-Il Chang, Chang-Hyun Lee, Changseok Kang, Sanghun Jeon, Juhyung Kim, Byeong-In Choi, Youngwoo Park, Jintaek Park, Wonseok Jeong, Janghyun You, Bonghyun Choi, Jongsun Sel, Jae Sung Sim, Yoocheol Shin, Jungdal Choi, and Won-Seong Lee, “Reliability Characteristics of TANOS (TaN/AlO/SiN/Oxide/Si) NAND Flash Memory with Rounded Corner (RC) Structure,” in Non-Volatile Semiconductor Memory Workshop, International Conference on Memory Technology and Design, 2008.
 [44] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” Symposium on VLSI Technology Digest of Technical Papers, 2006.
 
 |