跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉晏廷
研究生(外文):Liu, Yen-Ting
論文名稱:以複晶矽薄膜電晶體製作新穎高速電荷儲存式記憶體之研究
論文名稱(外文):Study on the Novel High Speed Charge Trapping Memory Devices with Poly-Si TFTs
指導教授:鄭晃忠鄭晃忠引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:80
中文關鍵詞:電荷儲存式記憶體複晶矽薄膜電晶體角隅高介電材質真空
外文關鍵詞:Charge Trapping Memory DevicePoly-Si TFTCornerhigh-kVacuum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
由於傳統的電荷儲存式記憶體在寫入和抹除的速度上,比起懸浮閘極式記憶體有一段差距,因此,近年來許多人致力於進行改善電荷儲存式記憶體寫入和抹除速度的研究。然而,大多數能改善寫入和抹除速度的方法,同時也造成了一些可靠度不佳的問題。在這篇論文,我們分成兩個主題進行研究。
第一個,在SONOS之電荷儲存式記憶體架構上,以FinFET、Omega Gate與GAA之結構探討其角隅效應。利用角隅這種尖銳的幾何結構能提升在穿隧層的電場並降低在阻擋層的電場,進而大大地加快寫入速度。因此,以GAA結構設計的SONOS記憶體展現出最高的寫入效率,也進一步證明了有越多角隅的SONOS記憶體擁有越快的寫入效率。
第二個,在SONOS之架構上,以真空取代穿隧氧化層,並以高介電常數介電質作為阻擋層,設計成新穎的TANVAS和THNVAS記憶體元件。採用Al2O3 或HfO2作為阻擋層,或使用真空作為穿隧層,皆能增加在穿隧層的電場並降低在阻擋層的電場,進而促使寫入和抹除速度能顯著的提升。因此,TANVAS和THNVAS比起TANOS和THNOS有較高的寫入和抹除效率。對使用oxide作為穿隧層的記憶體元件來說,在經過幾個寫入/抹除週期後,oxide穿隧層很容易受到外力的傷害而產生缺陷,使用真空作為穿隧層則能克服這項問題,所以TANVAS記憶體元件展現出良好的元件耐久度特性。在電荷保存能力方面,由於oxide穿隧層中的traps和HfO2阻擋層的低能障高度皆有助於載子的流動,容易形成漏電路徑,因此THNVAS和TANOS無法長時間將載子保存於電荷儲存層內。TANVAS避開了這些問題,所以展現出良好的資料保存性。
在經過對電性的探討和分析後,我們得到一些令人滿意的結果。我們的研究能顯著地提升寫入和抹除的速度,同時還能維持良好的元件耐久度和資料保存性。這在未來的高密度電路和系統面板具有相當大的發展潛力。

In recent years, many researchers have drawn attention to improve the program/erase efficiency of charge trapping memory devices owing to the program/erase efficiency of conventional charge trapping memory devices is lower than that of floating gate memory devices. However, most methods of improving the program/erase efficiency resulted in poor reliability issues. In this thesis, our investigation has been classified into two topics.
At first, for Poly-Si TFT SONOS memory devices, we have proposed a FinFET structure, an omega gate structure, and a GAA structure to investigate the corner effect. Since the sharp corner geometric will increase electric field in the tunneling layer and decrease electric field in the blocking layer, the program speed can be enhanced greatly. Consequently, the SONOS memory device with a GAA structure exhibits the highest program efficiency and it proves that SONOS memory devices with more corners will enhance program efficiency.
On the other hand, we have proposed novel high speed Poly-Si TFT TANVAS and THNVAS memory devices with high-k blocking layer and vacuum tunneling layer. Utilizing high-k materials, such as Al2O3 and HfO2, as blocking layer or using low-k materials, like vacuum, as tunneling layer can increase electric field in the tunneling layer and decrease electric field in the blocking layer. Based on this field enhanced scheme, the proposed memory devices reveal excellent memory performance. It is shown obviously that the TANVAS and THNVAS memory devices have higher program/erase efficiency than the TANOS and THNOS memory devices. Furthermore, the conventional SiO2 tunneling layer is always suffered from damage after program/erase cycles. Using vacuum tunneling layer can overcome this obstacle so that the TANVAS memory device exhibits better endurance characteristics. Due to the traps in oxide tunneling layer and lower conduction band offset in HfO2 blocking layer will provide leakage paths for charges, the TANOS and THNVAS memory devices are not able to preserve stored charges for a long time. The TANVAS memory device can avoid these problems and presents great retention characteristics.
Through investigating and analyzing the electrical characteristics, we obtain some satisfying results. The program/erase efficiency of proposed memory device is enhanced remarkably, and exhibits great endurance and retention characteristics. They are very promising for future applications in high density circuits and SOP.

Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgements v
Contents vi
Table Lists viii
Figure Captions ix
Chapter 1 - Introduction 1
1-1. Overview of the Low Temperature Poly-crystalline Silicon Thin-Film Transistors 1
1-2. Introduction of the SONOS Nonvolatile Memory Devices 2
1-2-1. Floating Gate and SONOS Non-volatile Memory Devices 2
1-2-2. Program/Erase Mechanisms of SONOS Non-volatile Memory Devices 4
1-2-3. Reliability of SONOS Non-volatile Memory Devices 7
1-3. Motivation 8
1-4. Thesis Organization 9
Chapter 2 - Corner Effect of Poly-Si TFT SONOS Memory Devices with FinFET, Omega Gate, and Gate-All-Around structures 11
2-1. Introduction 11
2-2. Device Fabrication of Poly-Si TFT SONOS with FinFET, Omega Gate, and Gate-All-Around structures 12
2-3. Materials Analysis 15
2-4. Results and Discussion 16
2-4-1. Simulation Result 16
2-4-2. Program efficiencies of the three structures 17
2-4-3. Subthreshold swing shifts of the three structures 18
2-5. Summary 19
Chapter 3 - Poly-Si TFT TANVAS and THNVAS Memory Devices
with a FinFET Structure 20
3-1. Introduction 20
3-2. Device Fabrication of Poly-Si TFT TANVAS and THNVAS with a FinFET structure 22
3-3. Materials Analysis 23
3-4. Results and Discussion 24
3-4-1. Read Disturbance 25
3-4-2. Program/Erase Efficiencies of FinFET TANOS and CP TANOS 25
3-4-3. Program/Erase Efficiencies of FinFET TANVAS and FinFET TANOS 26
3-4-4. Program/Erase Efficiencies of FinFET THNVAS and FinFET THNOS 28
3-4-5. Endurance Characteristics of TANVAS, TANOS, and THNVAS 30
3-4-6. Retention Characteristics of TANVAS, TANOS, and THNVAS 32
3-5. Summary 33
Chapter 4 - Summary and Conclusions 34
References 36
Vita 80
[1] A. A. Orouji and M. J. Kumar, “Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: a comprehensive study,” IEEE Trans. Device and Material reliability, vol. 6, no. 2, pp. 315-325, 2006.
[2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001.
[3] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE transactions on electron devices, vol. 33, pp. 477-481, 1986.
[4] K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, vol. 69, pp. 1703-1706, 1991.
[5] T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett., vol. 13, pp. 309-311, 1992.
[6] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser
annealing method for large area electronics,” IEDM Tech. Dig, vol. 91, pp. 563-566, 1991.
[7] Matsueda, Yojiro; Park, Yong-Sung; Choi, Sang-Moo; Chung, Ho-Kyoon, “Trend of system on panel” Proceedings of the 5th International Meeting on Information Display, pp. 841-844, 2006.
[8] Wang, Hongmei ;Chan, Mansun; Jagar, Singh; Wang, Yangyuan; Ko, Ping K.,“Submicron super TFTs for 3-D VLSI applications” IEEE Electron Device Letters, v 21, n 9, pp. 391-393, 2000.
[9] J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric,” IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2067–2072, Oct. 2003.
[10] B. D. Salvo, C. Gerardi, R. V. Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, T. Serafino, G. Ammendola, M. V. Duuren, P. Goarin, W. Y. Mei, K. V. D. Jeugd, H. Baron, M. Gely, P. Mur, and S. Deleonibus, “Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS),” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 377–389, Sep. 2004.
[11] J. H. Kim and J. B. Choi, “Long-term electron leakage mechanisms through ONO interpoly dielectric in stacked-gate EEPROM cells,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2048–2053, Dec. 2004.
[12] C. Hu, “Lucky-electron model of channel hot electron emission”, IEDM, vol. 25, pp.22-25, 1979.
[13] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, 1964.
[14] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” IEEE Trans. Electron Devices, vol. 15, pp. 686-686, 1968.
[15] K.T. San, C. Kaya, and T.P. Ma, “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions, vol 42, no. 1, pp. 150-159, Jan. 1995.
[16] W. J. Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, C. C. Liu, C. H. Chen, T. H. Wang, S. Pan, and C. Y. Lu, “Cause of Data Retention Loss in a Nitride-Based Localized Trapping Storage Flash Memory Cell,” Reliability Physics Symposium Proceedings, pp. 34~38, 2002.
[17] S. S. Chung, P. Y. Chiang, G. Chou, C. T. Huang, P. Chen, C. H. Chu, C. C. H. Hsu, “A novel Leakage Current Separation Technique in a Direct Tunneling Regime Gate Oxide SONOS Memory Cell,” IEDM Tech. Digest, session 26.6, 2003.
[18] K. Naruke, S. Taguchi, and M. Wada, “Stress Induced Leakage Current Limiting to Scale Down EEPROM Tunnel Oxide Thickness”, IEDM Tech. Dig., pp. 424-427, 1988.
[19] M. H. White, J. W. Dzimianski, M. C. Peckerar, “Endurance of Thin-Oxide Nonvolatile MNOS Memory Transistors,” IEEE Trans. Electron Devices, vol. 24, pp. 577-580, 1977.
[20] T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., no. 43, pp. 701-705, 1996.
[21] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in VLSI Symp. Circuit. Dig., pp. 85–90, 2001.
[22] T.Nishibe and H.Nakamura, “Value-added circuit and function integration for SOG (system-on glass) based on LTPS technology,” in Proc. SID, pp. 1091–1094, 2006.
[23] C. S. Tan, W. T. Sun, S. H. Lu, C. H. Kuo, I. T. Chang, S. H. Yeh, C. C. Chen, L. Liu, Y. C. Lin, and C. S. Yang, “A simple architecture for fully integrated poly-Si
TFT-LCD,” in Proc. SID, pp. 336–339, 2005.
[24] J. H. Kim, I. W. Cho, G. J. Bae, and I. S. Park, “Highly manufacturable SONOS non-volatile memory for the embedded SoC solution,” in VLSI Symp. Tech. Dig., pp. 31–32, 2003.
[25] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET's,” IEEE Trans. Electron Devices, vol. 40, pp. 2326-2329, Dec. 1993.
[26] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and R. Chau., “High Performance Fully-Depleted Tri-Gate CMOS Transistors ,”IEEE Trans. Electron Device Lett., vol. 24, pp. 263-265, Apr., 2003.
[27] N.Lindert, L Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu., “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Trans. Electron Device Lett., vol. 22, pp. 487-489, Oct., 2001.
[28] S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T. Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAM's,” IEEE Trans. Electron Devices, vol. 46, pp. 1693-1698, Aug. 1999.
[29] L. Chang, S. Tang, T. J. King, J. Bokor, and Chenming Hu, “Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs,” IEDM Tech. Digest, session 31.2, 2000.
[30] H. S. P Wong, D. J. Frank, P. M. Solomon, “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation,” IEDM Tech. Digest, session 15.2, 1998.
[31] E. J. Nowak, I. Aller, T. Ludwig, K. Kim, R. V. Joshi, C. T. Chuang, K. Bernstein, R. Puri, ‘Turning silicon on its edge,” IEEE Circuits and Devices Magazine, pp. 20-31, 2004.
[32] H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, J. J. Welser, “Nanoscale CMOS,” Proc. IEEE, vol.87, pp. 537, 1999.
[33] M. H. White, Y. Yang, P. Ansha, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol. 20, no. 2, pp. 190–195, Jun. 1997.
[34] M. French, H. Sathianathan, and M. White, “A SONOS nonvolatile memory cell for semiconductor disk application,” in Proc. IEEE Nonvolatile Memory Technol. Rev., pp. 70–73, 1993.
[35] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22–31, Jul. 2000.
[36] S. Mori, Y. Y. Araki, M. Sato, H. Meguro, H. Tsunoda, E. Kamiya, K. Yoshikawa, N. Arai, and E. Sakagami, “Thickness scaling limitation factors of ONO interpoly dielectric for nonvolatile memory devices,” IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 47–53, Jan. 1996.
[37] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” in IEDM Tech. Dig., pp. 613–616, 2003.
[38] C. H. Lee, J. Choi, C. Kang, Y. Shin, J. S. Lee, J. Sel, J. Sim, S. Jeon, B. I. Choe, D. Bae, K. Park, and K. Kim, “Multi-level NAND flash memory with 63 nm-node TANOS (Si−Oxide−SiN−Al2O3−TaN) cell structure,” in VLSI Symp. Tech. Dig., pp. 21–22, 2006.
[39] Y. Park, J. Choi, C. Kang, C. Lee, Y. Shin, B. Choi, J. Kim, S. Jeon, J. Sel, J. Park, K. Choi, T. Yoo, J. Sim, and K. Kim, “Highly manufacturable 32-Gb multi-level NAND flash memory with 0.0098 μm2 cell size using TANOS (Si−Oxide−Al2O3−TaN) cell technology,” in IEDM Tech. Dig., pp. 29–32, 2006.
[40] Chang-Hyun Lee, Sung-Hoi Hur, You-Cheol Shin, Jeong-Hyuk Choi, Dong-Gun Park, and Kinam Kim, “Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory,” in Appl. Phys. Lett., 86, 152908, 2005.
[41] Sanghun Jeon, Jeong Hee Han, Junghoon Lee, Sangmoo Choi, Hyunsang Hwang, and Chungwoo Kim, “Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler–Nordheim P/E Mode,” in IEEE Electron Device Lett., vol. 27, no. 6, JUNE 2006.
[42] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2 /SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect,” in Appl. Phys. Lett. 87, 073510, 2005.
[43] Sung-Il Chang, Chang-Hyun Lee, Changseok Kang, Sanghun Jeon, Juhyung Kim, Byeong-In Choi, Youngwoo Park, Jintaek Park, Wonseok Jeong, Janghyun You, Bonghyun Choi, Jongsun Sel, Jae Sung Sim, Yoocheol Shin, Jungdal Choi, and Won-Seong Lee, “Reliability Characteristics of TANOS (TaN/AlO/SiN/Oxide/Si) NAND Flash Memory with Rounded Corner (RC) Structure,” in Non-Volatile Semiconductor Memory Workshop, International Conference on Memory Technology and Design, 2008.
[44] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” Symposium on VLSI Technology Digest of Technical Papers, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 殷章甫,1996,<日本會計檢查院介紹>,《審計季刊》,17(1): 7-14。
2. 馬秀如,1997,<政府審計制度之設計>,《審計季刊》,17(3):12-26。
3. 林慶隆,2005,<中華人民共和國政府審計>,《政府審計季刊》,26(1):88-103。
4. 王永興,2002,<如何加強政府審計職權功能之研究>,《審計季刊》,22(4):7-21。
5. 張其祿,2009,<獨立管制機關的政治監督與治理:兼論對我國獨立機關之啟示>,《公平交易季刊》,17(2):89-138。
6. 曹俊漢,2000,「邁向評估審計的新紀元:美國會計總署結構與功能的研究」,台北:中央研究院歐美研究所,30(4):185-286。
7. 曹俊漢,2001,「中美審計體系功能之比較觀察」,台北:政治科學論叢,14:127-152。
8. 許慶復,1994,<憲政改革與台灣地區民主化>,《理論與政策》,8(4):3-14。
9. 黃蔭昌,1993,<論「審計權」之內涵與行使>,《審計季刊》,13(2):7-29。
10. 劉淑惠,1997,<立法院議事過程的非法制面因素-對修憲提案的另類思考>,《理論與政策》,18:19。
11. 劉淑惠,2002,<府際間的財政關係與爭議,以中央統籌分配稅為例>,《法政學報》,台北:淡江大學,15:191-205。
12. 鄭錫鍇,2005,<組織再造與憲政改革-監察院的功成與轉型>,《國家政策季刊》,4(2):173-196。
13. 蕭全政,1997,<組織與制度的政治經濟分析>,《暨大學報》,1(1):1-16。