跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾欣倫
研究生(外文):Hsin-Lun Chung
論文名稱:高強度爐石混凝土之性質研究
論文名稱(外文):Properties of High Strength Concrete with Ground Granulated Blast Furnace Slag
指導教授:詹穎雯詹穎雯引用關係
指導教授(外文):Yin-Wen Chan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:157
中文關鍵詞:高強度混凝土配比爐石粉受力行為收縮
外文關鍵詞:high-strength concretemixture proportionground granulated blast furnace slagbehavior under uniaxial compressive strengthshrinkage
相關次數:
  • 被引用被引用:4
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為符合現今建築物正朝著高層樓、擴大樓層及綠地開放空間的發展趨勢,那麼材料強度及性能上的發展勢必是不可缺少的元素,因此為發展超高強度的混凝土,將以高細度爐石粉為主要之卜作嵐材料,制定出高細度爐石粉高強度混凝土之配比特性,目標在於發展出水膠比、膠結料用量的合宜範圍之混凝土配比,並瞭解高強度混凝土的力學性質,研發適合台灣建築結構之高強度混凝土,期使所發展之高強度混凝土配比在一般具備良好品管水準之混凝土拌和廠皆可拌製,並制定台灣高強度混凝土之規格與標準。
本研究結果為發展出目標強度70MPa與100MPa之兩種混凝土配比,探討水膠比效應、爐石取代量、總粉體含量及齡期時間效應這些配比變數對於抗壓強度的影響,以便作為高強度發展的配比基礎。並進一步進行性質試驗,以瞭解高強度混凝土的力學性質,藉以分析高強度混凝土在單軸壓力下的受力行為以及破壞行為,結果得知高強度混凝土的力學性質有明顯的提升,然而在破壞行為則過於脆性,因此高強度混凝土是需要良好的圍束能力,並瞭解高強度混凝土的收縮性質,這些性質對於應用在建築結構上是相當重要。
並由實驗結果,我們對於ACI現有的經驗規範公式進行比對,結果顯示經驗公式對於彈性模數有高估的情形,而劈裂強度有低估的疑慮,所以根據實驗結果加以修正以符合國內材料之特性。
誌謝I
摘要III
目錄IV
表目錄VIII
圖目錄X
照片目錄XIV
第一章 緒論- 1 -
1.1 研究背景- 1 -
1.2 研究動機與目的 - 1 -
1.3 研究內容- 3 -
第二章 文獻回顧- 5 -
2.1 高強度混凝土之簡介- 5 -
2.1.1 定義- 5 -
2.1.2 不同於普通混凝土之性質- 6 -
2.1.3 高強度混凝土之受力行為- 6 -
2.2 影響混凝土強度之因素- 8 -
2.2.1 水泥漿體- 9 -
2.2.1.1 水灰比- 9 -
2.2.1.2 水泥的水化機理- 9 -
2.2.2 骨材- 11 -
2.2.3 卜作嵐材料- 12 -
2.2.4 界面鍵結強度 - 14 -
2.2.5 孔隙結構- 15 -
2.3 爐石混凝土之性質- 17 -
2.3.1 爐石的成分性質- 18 -
2.3.2 爐石主要水化反應機理- 19 -
2.3.3 爐石對混凝土性質的影響- 20 -
2.4 混凝土之收縮變形- 24 -
2.4.1 混凝土作用水 - 24 -
2.4.2 收縮變形機制 - 25 -
2.4.3 影響高強度混凝土收縮因素- 27 -
2.4.3.1 影響自體收縮之因子- 27 -
2.4.3.2 影響乾燥收縮之因子- 30 -
2.5 混凝土之劈裂強度- 31 -
2.5.1 劈裂試驗- 31 -
2.5.2 劈裂強度與抗壓強度的關係- 32 -
第三章 實驗計畫- 35 -
3.1 實驗背景- 35 -
3.2 實驗內容- 35 -
3.3 高強度混凝土配比設計- 36 -
3.3.1 組成材料- 36 -
3.3.2 活性指數- 37 -
3.3.3 配比設計- 37 -
3.3.4 實驗變數- 38 -
3.4 實驗儀器與設備 - 38 -
3.4.1 大型拌合試驗 - 38 -
3.4.2 小型拌合試驗 - 38 -
3.4.3 性質試驗- 39 -
3.5 試驗內容與方法 - 40 -
3.5.1 砂漿拌合試驗過程- 40 -
3.5.2 混凝土拌合試驗流程- 41 -
3.5.3 抗壓強度之量測- 42 -
3.5.4 彈性模數之量測- 42 -
3.5.5 劈裂抗張試驗 - 43 -
3.5.6 收縮試驗- 44 -
第四章 實驗結果與討論- 46 -
4.1 前言- 46 -
4.2 抗壓強度發展之因素- 46 -
4.2.1 水膠比效應- 47 -
4.2.2 爐石取代效應 - 48 -
4.2.3 齡期時間效應 - 50 -
4.2.4 總粉體量- 51 -
4.2.5 粗細骨材比例 - 52 -
4.3 高強度混凝土之受力行為- 52 -
4.3.1 應力-應變曲線- 52 -
4.3.2 破壞機制- 54 -
4.4 彈性模數- 55 -
4.5 劈裂強度- 59 -
4.5.1 劈張強度發展趨勢- 59 -
4.5.2 劈張強度之預測關係式- 60 -
4.6 收縮性質- 61 -
4.6.1 高強度混凝土之收縮性質- 61 -
4.6.2 高強度混凝土之乾燥收縮- 62 -
第五章 結論與建議- 64 -
5.1 結論- 64 -
5.1.1 配比設計- 64 -
5.1.2 基本性質- 65 -
5.2 建議- 67 -
參考文獻- 69 -
【1】Li, Z.J., and Y.S. Zhang, “High-Performance Concrete,” Handbook of Structural Engineering, 2005.
【2】ACI Committee 363, “State-of-the-Art Report on High-Strength Concrete,” ACI, 1997.
【3】Gupta, S.M., P. Aggarwal, and Y. Aggarwal, “Shrinkage of High Strength Concrete,” Asian Journal of Civil Engineering, Vol. 7, No. 2, PP. 183-194, 2006.
【4】龔龍山,「高強度波索蘭混凝土之基本工程性質研究」,碩士論文,國立交通大學土木工程研究所,民國八十年。
【5】Mehta, P., and P. J.M. Monteiro, “Concrete Structure, Properties and Materials,” Prentice- Hall inc., Englewood-Cliffs, N.J., 1986.
【6】顏聰,「骨材之強度,彈性模數與混凝土受力結構」,土木水利季刑第三卷第四期,PP. 5-9,民國六十六年。
【7】Mindess, S., and J.F. Young, “Concrete,” Prentice- Hall inc., Englewood Cliffs, N.J., PP. 415-417, 1981.
【8】Imam, M., L. Vandewalle, and F. Mortelmans, “Are current concrete strength tests suitable for high strength concrete?” Materials and Structures, No.28, PP. 384-391, 1995.
【9】吳鳳儀,「水泥混凝土抗壓試驗及應注意事項」,台灣公路工程月刊專輯,民國七十九年。
【10】Aiticin, P.C., and A. Neville, “High Performance Concrete Demystified,” Concrete International, Vol. 15, No. 1, pp. 21-26, 1989.
【11】李修齊,「高強度混凝土水中磨耗性質之機理探討」,碩士論文,國立台灣大學土木工程研究所,民國八十六年。
【12】湯維堯,「高強度混凝土水中磨耗性質與早期收縮行為之研究」,碩士論文,國立台灣大學土木工程研究所,民國八十六年。
【13】黃兆龍,「混凝土性質和行為」,廣昌,民國七十四年。
【14】黃兆龍、洪盟峰,「高性能混凝土」,營建知訊,129期,PP. 5-17,民國八十二年。
【15】Ozturan, T., and C. Cecen, “Effect of coarse aggregate type on mechanical properties of concretes with different strengths,” Cement and Concrete Research, Vol, 27, PP. 165-170, 1997.
【16】Wu, Ke-Ru, B. Chen, W. Yao, and D. Zhang, “Effect of coarse aggregate type on mechanical properties of high-performance concrete,” Cement and Concrete Research, Vol.31, 2001.
【17】Cordon, W.A., and A.H. Gillespie, “Variables in Concrete Aggregate and Portland Cement Pastes which Influence the Strength of Concrete,” ACI journal, Vol.60, No8, 1963~1964.
【18】British Standard Method, BS 812.
【19】Amirkhanian, et. al., “The Effect of Igneous Aggregate Source with Various Los Angeles Abrasion Test Values on the Strength of Concrete Mixtures,” Cement Concrete and Aggregates, CCAGDP., Vol. 14, No. 2, PP.86-92, Winter, 1992.
【20】「高強度混凝土設計及施工準則初步研究」,內政部建築研究籌備處專題研究計畫成果報告,PP. 8,民國七十九年。
【21】Mehta, P.K., “Pozzolanic and Cementitious by Products as Mineral Admixtures for Concrete-A Critical Review,” ACI SP-79, PP. 1-46, 1983.
【22】ACI Committee 226, “Silica Fume in Concrete,” ACI Materials Journal, Vol.84, No.6, PP. 158-166, 1987.
【23】宋佩瑄,「矽灰在混凝土工程上之發展與應用」,結構工程,PP. 113-120,民國七十七年七月。
【24】賴正義,「高飛灰量混凝土性質」,台電工程月刊,第551期,民國八十三年七月。
【25】詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程研究所,民國七十五年六月。
【26】陳振川,「飛灰與爐石混凝土性質與其工程應用」,結構工程,第二卷,第四期,PP. 87-94,民國七十六年十月。
【27】Rehm, G., P. Diem, and R. Zimbelmann, “Technische Moglichkeitenzur Frhohung der Zugfestigkeit von Beton, Schritenreihe des DAFStb,” Heft 283, 1977.
【28】Young, J.F., “A Review of the Pore Structure of Cement Paste and Concrete and Its Influence on Permeability”, ACI SP-108, 1988.
【29】中國鋼鐵公司,「爐石利用推廣手冊」。
【30】行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」。
【31】洪文方,「普通水泥中添加高爐熟料之影響」,國立台灣工業技術學院碩士論文,民國七十四年。
【32】日本土木學會,「高爐石粉末應用於混凝土施工指針」,平成8年。
【33】陳清泉、陳振川,「爐石為水泥熟料與添加料對混凝土特性影響之文獻及國外現況調查研究」,台灣營建研究中心報告,民國七十六年。
【34】ACI Committee 233, “Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete,” American Concrete Institute, Detroit, 1996.
【35】Hogan, F.J., and J.W. Meusel, “Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag,” Cement Concrete and Aggregates, Vol. 3, No. 1, Summer, PP. 40-52, 1981.
【36】詹穎雯,「飛灰爐石混凝土之原理、性質與應用」,飛灰爐石於混凝土工程之合理運用研討會論文集,台灣營建研究院,PP. 1~16,民國八十八年五月。
【37】Hogan, F.J., and J.W. Meusel, “Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag,” Cement Concrete and Aggregates, Vol.3, No.1, Summer, PP.40~52, 1981.
【38】吳秉駿,「台灣地區使用飛灰/爐石混凝土變形之預測研究」,碩士論文,國立台灣大學土木工程研究所,民國九十年。
【39】ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” ACI, Detroit, PP. 98, Oct., 1978.
【40】Neville, A.M., “Properties of Concrete,” Pitman, London, PP. 374, 1981.
【41】Holt, E., and M. Leivo, “Cracking Risks Associated with Early Age Shrinkage,” Cement and Concrete Composites, 26, 2004.
【42】Tazawa, E., and S. Miyazawa, “Influence of Constituents and Composition on Autogenous Shrinkage of Cementitious Materials,” Magazine of Concrete Research, Vol. 49, No.178, PP. 15-22, 1997.
【43】Tazawa, E., and S. Miyazawa, “Autogenous Shrinkage of Concrete and Its Importance in Concrete Technology,” Proc. of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP. 159-168, 1993.
【44】劉家佑,「高性能混凝土自體收縮性質之研究」,碩士論文,國立台灣大學土木工程研究所,民國八十五年。
【45】Roy, L.R., and F. de Larrard, “Creep and Shrinkage of High Performance Concrete,” Proc. of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP. 499-504, 1993.
【46】Tazawa, E., and S. Miyazawa, “Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste,” Cement and Concrete Research, Vol.25, No.2, PP. 281-287, 1995.
【47】Aguda, A., and R. Gttu, “Creep and Shrinkage of High Performance Concrete,” Proc. of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP. 159-168, 1993.
【48】Brooks, J.J., and J.D. Hynes, “Creep and Shrinkage of Ultra High Strength Silica Fume Concrete,” Proc. of the 5th Int. RILEM Symposium on Creep and Shrinkage of Concrete, Barcelona, Spain, PP. 499-504, 1993.
【49】Perenchio, W.F., “The Drying Shrinkage Dilemma-Some Observations and Questions about Drying Shrinkage and Its Consequence,” Concrete Construction, Vol.42, No.4, PP.379-383, Apr., 1997.
【50】Arioglu, N., Z.C. Girgin, and E. Arioglu, “Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and Its Application in Strength Criterion,” ACI Materials Journal, Vol.103, No.1, 2006.
【51】Bortolotti, L., “First Cracking Load of Concrete Subjected to Direct Tension,” ACI Materials Journal, Vol.88, No.1, PP. 70-73, 1991.
【52】Johnston, I.W., “Strength of Intact Geomechanical Materials,” Journal of Geotechnical Engineering, ASCE, v.111, No.6, PP. 730-748, 1985.
【53】Setunge, S., M.M. Attard, P.P. Darvall, “Ultimate Strength of Confined Very High-Strength Concretes,” ACI Structural Journal, Vol.90, No.6, PP. 632-641, 1993.
【54】Dewar, J.D., “The Indirect Tensile Strength of Concrete of High Compressive Strength,” Technical Report No.42.337, Cement and Concrete Association, Wexham, Spring 1964.
【55】Carrasquillo, R.L., F.O. Slate, and A.H. Nilson, “Microcracking and Behavior of High-Strength Concrete Subject to Short-term Loading,” ACI Journal, Proceeding V.78, No.3, PP. 179, 1981.
【56】Yamamoto, Y., and M. Kobayashi, “Use of Mineral Fines in Hsc-Requirement and Strength,” Concrete International, 1982.
【57】ACI Committee 318, ACI, 1983.
【58】Martinez, S., A.H. Nilson, and F.O. Slate, “Short-term Mechanical Properties of High-Strength Light-Weight Concrete,” Department Report No.82-9, Structural Engineering, Cornell University, Ithac New York, 1982.
【59】Tomosawa, F., and T. Noguchi, “Relationship between Compressive Strength and Modulus of Elasticity of High-Strength Concrete,” Dept. of Architecture, Fac. of Engineering, Univ. of Tokyo, 1995.
【60】Mostofinejad, D., and M. Nozhati, “Prediction of the Modulus of Elasticity of High Strength Concrete,” Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B3, 2005.
【61】陸景文,「台灣地區混凝土橋梁溫度、彈性應變、潛變及乾縮特性之整合研究」,博士論文,國立台灣大學土木工程研究所,民國九十年7月。
【62】陳育聖,「自充填混凝土之工程性質」,碩士論文,國立台灣大學土木工程研究所,民國八十九年。
【63】Mehta, P., and P. J.M. Monteiro, “Concrete,” Second Edition, 1993.
【64】林建宏,「爐石混凝土水中磨耗性質研究」,碩士論文,國立台灣大學土木工程研究所,民國九十三年。
【65】Wittmann, F.H., “Crack Formation and Fracture Energy of Normal and High Strength Concrete,” Sadhana Vol. 27, Part 4, pp. 413–423, August 2002.
【66】Zhou, F.P., F.D. Lydon, and B.I.G. Barr, “Effect of Coarse Aggregate on Elastic Modulus and Compressive Strength of High Performance Concrete,” Cement and Concrete Research, Vol. 25, No. 1, pp. 177-186, 1995.
【67】林宜賢,「高性能混凝土配比設計研究」,國立成功大學土木工程研究所碩士論文,民國九十二年。
【68】Beshrb, H., A.A. Almusallama, and M. Maslehuddinb, “Effect of coarse aggregate quality on the mechanical properties of high strength concrete,” Construction and Building Materials, 97–103, 2003.
【69】Li, J., and P. Tian, “Effect of slag and silica fume on mechanical properties of high strength concrete,” Cement and Concrete Research, Vol. 27, No. 6, pp. 833-837, 1997.
【70】Khatib, J.M., and J.J. Hibbert, “Selected engineering properties of concrete incorporating slag and metakaolin,” Construction and Building Materials, 19, PP. 460–472, 2005.
【71】Shannag, M.J., “High strength concrete containing natural pozzolan and silica fume,” Cement & Concrete Composites, 22, PP. 399-406, 2000.
【72】Lim, S.N., and T.H. Wee, “Autogenous Shrinkage of Ground-Granulated Blast-Furnace Slag Concrete,” ACI Materials Journal, V. 97, No. 5, pp. 587-593, Sept.-Oct 2000.
【73】Wang, L., P. Tian, and Y. Yao, “Application of Ground Granulated Blast Furnace Slag in High Performance Concrete in China,” International Workshop on Sustainable Development and Concrete Technology.
【74】Naomitsu, T., and K. Koshiro, “Granularity and Surface Structure of Ground Granulated Blast-Furnace Slags,” J. Am. Ceram. Soc., 82 [8] 2188–92 , 1999.
【75】David, N. R., “Strength and Durability of a 70% Ground Granulated Blast Furnace Slag Concrete Mix,” Missouri Department of Transportation Organizational Results, February 2006.
【76】Babu, K.G., and V.S.R. Kumar, “Efficiency of GGBS in Concrete,” Cement and Concrete Research, 30, PP. 1031- 1036, 2000.
【77】King Fahd University of Petroleum & Minerals, 2007.
【78】Igarashi, S.I., A. Bentur, and K. Kovler, “Autogenous shrinkage and induced restraining stresses in high-strength concretes,” Cement and Concrete Research, 30, PP. 1701-1707, 2000.
【79】「混凝土結構材料的物理力學性能」,混凝土結構,第二章。
【80】Gysel, A.V., and L. Taerwe, “Analytical formulation of the complete stress-strain curve for high strength concrete,” Materials and Structures, Vol. 29, pp 529-533, November 1996.
【81】The education and research arm of the Building and construction Authority, “Design Guide of High Strength Concrete to Singapore Standard CP 65,” BCA Sustainable Construction Series – 3, 2008.
【82】新世代高強度鋼筋混凝土研究-建築結構新工法計畫,社團法人台灣混凝土學會。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top