|
[1] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, 17 (6), 2005, pp. 734-749. [2] G. Adomavicius, Y. Kwon, Improving aggregate recommendation diversity using ranking-based techniques, IEEE Transactions on Knowledge and Data Engineering, 24 (5), 2012, pp. 896-911. [3] L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, INTRIGUE: Personalized recommendation of tourist attractions for desktop and hand held devices, Applied Artificial Intelligence, 17 (8), 2003, pp. 687-714. [4] M. Balabanovi, Y. Shoham, Fab: Content-based, collaborative recommendation, Communications of the ACM, 40 (3), 1997, pp. 66-72. [5] A.B. Barragáns-Martínez, E. Costa-Montenegro, J.C. Burguillo, M. Rey-López, F.A. Mikic-Fonte, A. Peleteiro, A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition, Information Sciences, 180 (22), 2010, pp. 4290-4311. [6] C. Basu, H. Hirsh, W. Cohen, Recommendation as classification: Using social and content-based information in recommendation, Proceedings of the 15th National Conference on Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 714-720. [7] A. Bellogín, I. Cantador, P. Castells, A comparative study of heterogeneous item recommendations in social systems, Information Sciences, 221 (1), 2013, pp. 142-169. [8] D. Billsus, M.J. Pazzani, Learning collaborative information filters, Proceedings of the 15th International Conference on Machine Learning, Madison, Wisconsin, USA, 1998, pp. 46-54. [9] D. Billsus, M.J. Pazzani, User modeling for adaptive news access, User Modeling and User-Adapted Interaction, 10 (2-3), 2000, pp. 147-180. [10] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, The Journal of Machine Learning Research, 3, 2003, pp. 993-1022. [11] D.M. Blei, Probabilistic topic models, Communications of the ACM, 55 (4), 2012, pp. 77-84. [12] R. Burke, Hybrid recommender systems: Survey and experiments, User Modeling and User-Adapted Interaction, 12 (4), 2002, pp. 331-370. [13] I. Cantador, P. Castells, Group recommender systems: New perspectives in the social web, in: Recommender Systems for the Social Web, Springer, Berlin, 2012, pp. 139-157. [14] R.S. Chen, Recommendation mechanisms for knowledge collections in communities of question-answering websites, in: Institute of Information Management, National Chiao Tung University, 2010. [15] J. Cho, K. Kwon, Y. Park, Collaborative filtering using dual information sources, IEEE Intelligent Systems, 22 (3), 2007, pp. 30-38. [16] I. Christensen, S. Schiaffino, Matrix factorization in social group recommender systems, Proceedings of the 12th Mexican International Conference on Artificial Intelligence, Mexico, Mexico, 2013, pp. 10-16. [17] B. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval in Practice, Addison-Wesley, Boston, 2009. [18] M. Gan, R. Jiang, Improving accuracy and diversity of personalized recommendation through power law adjustments of user similarities, Decision Support Systems, 55 (3), 2013, pp. 811-821. [19] I. Garcia, L. Sebastia, E. Onaindia, C. Guzman, A group recommender system for tourist activities, in: T. Di Noia, F. Buccafurri (Eds.) E-Commerce and Web Technologies, Springer, Berlin, 2009, pp. 26-37. [20] R. Gazan, Social Q&;A, Journal of the American Society for Information Science and Technology, 62 (12), 2011, pp. 2301-2312. [21] N. Glance, D. Arregui, M. Dardenne, Knowledge pump: Community-centered collaborative filtering, Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary, 1998, pp. 83-88. [22] C.-K. Huang, Complementary Q&;A document recommendations for communities of question-answering websites, in: Institute of Information Management, National Chiao Tung University, 2012. [23] R. Jäschke, A. Hotho, F. Mitzlaff, G. Stumme, Challenges in tag recommendations for collaborative tagging systems, in: Recommender Systems for the Social Web, Springer, Berlin, 2012, pp. 65-87. [24] A. Jameson, S. Baldes, T. Kleinbauer, Enhancing mutual awareness in group recommender systems, Proceedings of the IJCAI Workshop on Intelligent Techniques for Web Personalization, Menlo Park, California, USA, 2003, pp.1-8. [25] A. Jameson, More than the sum of its members: Challenges for group recommender systems, Proceedings of the Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, 2004, pp. 48-54. [26] X. Jin, C. Wang, J. Luo, X. Yu, J. Han, LikeMiner: A system for mining the power of 'like' in social media networks, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011, pp. 753-756. [27] M.I. Jordan, Graphical models, Statistical Science, 19 (1), 2004, pp. 140-155. [28] P. Jurczyk, E. Agichtein, Discovering authorities in question answer communities by using link analysis, Proceedings of the 16th ACM Conference on Information and Knowledge Management, Lisbon, Portugal, 2007, pp. 919-922. [29] J.K. Kim, H.K. Kim, H.Y. Oh, Y.U. Ryu, A group recommendation system for online communities, International Journal of Information Management, 30 (3), 2010, pp. 212-219. [30] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, J. Riedl, GroupLens: Applying collaborative filtering to Usenet news, Communications of the ACM, 40 (3), 1997, pp. 77-87. [31] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, IEEE Computer, 42 (8), 2009, pp. 30-37. [32] G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list, Management Science, 52 (7), 2006, pp. 1031-1042. [33] H. Lieberman, Letizia: An agent that assists web browsing, Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, 1995, pp. 924-929. [34] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Internet Computing, 7 (1), 2003, pp. 76-80. [35] D.-R. Liu, Y.-Y. Shih, Integrating AHP and data mining for product recommendation based on customer lifetime value, Information &; Management, 42 (3), 2005, pp. 387-400. [36] D.-R. Liu, C.-H. Lai, Y.-T. Chen, Document recommendations based on knowledge flows: A hybrid of personalized and group-based approaches, Journal of the American Society for Information Science and Technology, 63 (10), 2012, pp. 2100-2117. [37] D.-R. Liu, Y.-H. Chen, W.-C. Kao, H.-W. Wang, Integrating expert profile, reputation and link analysis for expert finding in question-answering websites, Information Processing &; Management, 49 (1), 2013, pp. 312-329. [38] D.-R. Liu, Y.-H. Chen, C.-K. Huang, QA document recommendations for communities of question–answering websites, Knowledge-Based Systems, 57, 2014, pp. 146-160. [39] D.-R. Liu, Y.-H. Chen, M. Shen, P.-J. Lu, Complementary QA-network analysis for QA retrieval in social question-answering websites, Journal of the Association for Information Science and Technology, In Press, 2014. [40] J. Liu, C. Wu, W. Liu, Bayesian probabilistic matrix factorization with social relations and item contents for recommendation, Decision Support Systems, 55 (3), 2013, pp. 838-850. [41] X. Liu, W. Croft, M. Koll, Finding experts in community-based question-answering services, Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany, 2005, pp. 315-316. [42] W.S. Lovejoy, A. Sinha, Efficient structures for innovative social networks, Management Science, 56 (7), 2010, pp. 1127-1145. [43] T. Luostarinen, O. Kohonen, Using topic models in content-based news recommender systems, Proceedings of the 19th Nordic Conference of Computational Linguistics, Oslo, Norway, 2013, pp. 239-251. [44] H. Ma, I. King, M.R.-T. Lyu, Mining web graphs for recommendations, IEEE Transactions on Knowledge and Data Engineering, 24 (6), 2012, pp. 1051-1064. [45] Q. Ma, K. Tanaka, Topic-structure-based complementary information retrieval and its application, ACM Transactions on Asian Language Information Processing, 4 (4), 2005, pp. 475-503. [46] J.F. McCarthy, T.D. Anagnost, MusicFX: An arbiter of group preferences for computer supported collaborative workouts, Proceedings of the ACM Conference on Computer Supported Cooperative Work, Seattle, Washington, USA, 1998, pp. 363-372. [47] K. McCarthy, L. McGinty, B. Smyth, M. Salamo, Social interaction in the CATS group recommender, Workshop on the Social Navigation and Community based Adaptation Technologies, Dublin, Ireland, 2006, pp.1-10. [48] K.K. Nam, M.S. Ackerman, L.A. Adamic, Questions in, knowledge in?: A study of naver's question answering community, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, Massachusetts, USA, 2009, pp. 779-788. [49] L. Nie, B.D. Davison, X. Qi, Topical link analysis for web search, Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, 2006, pp. 91-98. [50] M. O'Connor, D. Cosley, J.A. Konstan, J. Riedl, PolyLens: A recommender system for groups of users, Proceedings of the 7th Conference on European Conference on Computer Supported Cooperative Work, Bonn, Germany, 2001, pp. 199-218. [51] E.R. Omiecinski, Alternative interest measures for mining associations in databases, IEEE Transactions on Knowledge and Data Engineering, 15 (1), 2003, pp. 57-69. [52] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the web, Technical Report, Stanford Digital Library Technologies Project, 1998, pp.1-17. [53] J. Parapar, A. Bellogín, P. Castells, Á. Barreiro, Relevance-based language modelling for recommender systems, Information Processing &; Management, 49 (4), 2013, pp. 966-980. [54] M. Pazzani, D. Billsus, Learning and revising user profiles: The identification of interesting web sites, Machine Learning, 27 (3), 1997, pp. 313-331. [55] M. Pazzani, D. Billsus, Content-based recommendation systems, in: P. Brusilovsky, A. Kobsa, W. Nejd (Eds.) The Adaptive Web, Springer, Berlin, 2007, pp. 325-341. [56] M.S. Pera, Y.-K. Ng, A group recommender for movies based on content similarity and popularity, Information Processing &; Management, 49 (3), 2013, pp. 673-687. [57] L. Quijano-Sanchez, J.A. Recio-Garcia, B. Diaz-Agudo, Personality and social trust in group recommendations, Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 121-126. [58] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews, Proceedings of ACM Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina, USA, 1994, pp. 175-186. [59] P. Resnick, H.R. Varian, Recommender systems, Communications of the ACM, 40 (3), 1997, pp. 56-58. [60] C.J.V. Rijsbergen, Information Retrieval, 2nd ed., Butterworth-Heinemann, London, 1979. [61] B. Saha, L. Getoor, Group proximity measure for recommending groups in online social networks, 2nd ACM SIGKDD Workshop on Social Network Mining and Analysis, Las Vegas, Nevada, USA, 2008, pp. 1-9. [62] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing &; Management, 24 (5), 1988, pp. 513-523. [63] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of recommendation algorithms for e-commerce, Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, Minnesota, USA, 2000, pp. 158-167. [64] C. Shah, S. Oh, J.S. Oh, Research agenda for social Q&;A, Library &; Information Science Research, 31 (4), 2009, pp. 205-209. [65] U. Shardanand, P. Maes, Social information filtering: Algorithms for automating "word of mouth", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, Colorado, USA, 1995, pp. 210-217. [66] J. Shen, W. Shen, X. Fan, Recommending experts in Q&;A communities by weighted HITS algorithm, International Forum on Information Technology and Applications, Chengdu, China, 2009, pp. 151-154. [67] C. Shin, W. Woo, Socially aware TV program recommender for multiple viewers, IEEE Transactions on Consumer Electronics, 55 (2), 2009, pp. 927-932. [68] S.K. Shin, W. Kook, Can knowledge be more accessible in a virtual network?: Collective dynamics of knowledge transfer in a virtual knowledge organization network, Decision Support Systems, 59, 2014, pp. 180-189. [69] H. Sorensen, M.M. Elligott, PSUN: A profiling system for Usenet news, Proceedings of the CIKM 95 Workshop on Intelligent Information Agents, Baltimore, Maryland, USA, 1995, pp. 205-211. [70] E.I. Sparling, S. Sen, Rating: How difficult is it?, Proceedings of the 5th ACM Conference on Recommender Systems, Chicago, Illinois, USA, 2011, pp. 149-156. [71] M. Steyvers, T. Griffiths, Probabilistic topic models, in: T.K. Landauer, D.S. McNamara, S. Dennis, W. Kintsch (Eds.) Handbook of Latent Semantic Analysis, Psychology Press, London, 2007. [72] X. Sun, H. Lin, Topical community detection from mining user tagging behavior and interest, Journal of the American Society for Information Science and Technology, 64 (2), 2013, pp. 321-333. [73] H. Toba, Z.-Y. Ming, M. Adriani, T.-S. Chua, Discovering high quality answers in community question answering archives using a hierarchy of classifiers, Information Sciences, 261 (10), 2014, pp. 101-115. [74] C. Wang, D.M. Blei, Collaborative topic modeling for recommending scientific articles, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011, pp. 448-456. [75] Z. Wang, L. Sun, W. Zhu, S. Yang, H. Li, D. Wu, Joint social and content recommendation for user-generated videos in online social network, IEEE Transactions on Multimedia, 15 (3), 2013, pp. 698-709. [76] Weka, Data Mining Software, in: http://www.cs.waikato.ac.nz/ml/weka. [77] Z. Yu, X. Zhou, D. Zhang, An adaptive in-vehicle multimedia recommender for group users, Proceedings of IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 2005, pp. 2800-2804. [78] Z. Yu, X. Zhou, Y. Hao, J. Gu, TV program recommendation for multiple viewers based on user profile merging, User Modeling and User-Adapted Interaction, 16 (1), 2006, pp. 63-82. [79] J. Zhang, M. Ackerman, L. Adamic, Expertise networks in online communities: Structure and algorithms, Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta, Canada, 2007, pp. 221-230. [80] J. Zhang, M. Ackerman, L. Adamic, K. Nam, QuME: A mechanism to support expertise finding in online help-seeking communities, Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, Newport, Rhode Island, USA, 2007, pp. 111-114. [81] Z. Zhang, Q. Li, D. Zeng, H. Gao, Extracting evolutionary communities in community question answering, Journal of the Association for Information Science and Technology, 65 (6), 2014, pp. 1170-1186. [82] H. Zhu, E. Chen, H. Xiong, H. Cao, J. Tian, Ranking user authority with relevant knowledge categories for expert finding, World Wide Web, 2013, pp. 1-27.
|