跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宇軒
研究生(外文):Chen, Yu-Hsuan
論文名稱:知識社群問答文件推薦技術
論文名稱(外文):QA Document Recommendation Techniques for Knowledge Communities
指導教授:劉敦仁劉敦仁引用關係
指導教授(外文):Liu, Duen-Ren
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:67
中文關鍵詞:知識社群群體推薦社會問答網站PageRank-Like演算法社群成員知識聲譽主題模型
外文關鍵詞:Knowledge CommunityGroup RecommendationSocial QA WebsitesPageRank-Like AlgorithmKnowledge Reputation of Community MemberTopic Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著社交媒體的興起,社會問答網站已成為常見的知識生產與分享平台。此平台提供之社群服務讓有著共同興趣、需求或專長的使用者可以組成知識社群,而社群成員可以收藏以及分享他們感興趣的問答知識(文件)。然而,每天產生之大量問答文件,使得資訊過載成為重要的問題,因此有必要發展推薦系統來為社會問答網站之社群建議所需之問答知識文件。
本篇論文提出了幾個稱為GTPR為基礎之新穎推薦方法,將相關的問答文件推薦給社會問答網站中的知識社群。提出的方法於推薦問答文件時,考量了幾個社群相關的特徵、知識文件之間的關係以及文件和社群的相關性。此外,由於現有採用社交媒體之使用者定義標籤以劃分文件主題的方法有著穩健性不足之問題,本研究進一步提出稱為GPTLR之方法,結合社群之潛藏主題興趣以及基於成員主題聲譽之收藏權重來改善以內容為基礎之推薦模型。
本研究使用了真實的社會問答網站資料,以評估與比較所提出之方法。實驗結果顯示提出之方法優於其它傳統方法,提供了更有效的方式為知識社群推薦問答文件。
With the emergence of Social Media, Social Question-Answering (SQA) websites have become common knowledge production and sharing platforms. This platform provides knowledge community services where users with common interests, needs or expertise can form a knowledge community. Community members can collect and share QA knowledge (documents) regarding their interests. However, due to the massive amount of QAs created every day, information overload can become a major problem. Consequently, a recommender system is needed to suggest QA documents for communities of SQA websites.
In this thesis, we propose several novel methods, called GTPR-based approaches, to recommend related QA documents for knowledge communities of SQA sites. The proposed methods recommend QA documents by considering community-specific features, the relationships between knowledge documents, and documents’ relevance to the communities. In addition, due to the robustness problem of the existing topic grouping method using user-defined tags in Social Media, this study further propose a novel method, called GPTLR, incorporating the community’s latent topics of interest and collection weights based on members’ topical reputations to improve content-based recommendation models.
This research evaluates and compares the proposed methods using a real-world dataset collected from a SQA website. Experimental results show that the proposed methods outperform other traditional methods, providing a more effective and accurate recommendations of Q&;A documents to knowledge communities.
摘要 i
ABSTRACT ii
誌謝 iii
Table of Contents iv
List of Tables vi
List of Figures vii
1. Introduction 1
1.1. Background and motivation 1
1.2. Approaches 2
1.3. Organization 3
2. Related Work 4
2.1. Virtual knowledge communities and social question answering websites 4
2.2. Recommender systems 5
2.3. Group recommender systems 6
2.4. Identifying expert users in SQA websites 8
2.5. Beyond relevance retrieval 9
2.6. Topic modeling 9
3. Topical QA Recommendation Approaches Using the Tag-based Topic Grouping Technique 12
3.1. Overview of recommendations for community-knowledge collection 12
3.2. Data preprocessing 15
3.3. Preference analysis of knowledge communities 15
4. Topical QA Recommendation Approaches Based on LDA 30
4.1. Overview of recommendations for community-knowledge collection 30
4.2. Data preprocessing 32
4.3. Topic modeling of QA documents 33
4.4. Preference analysis of knowledge communities 34
5. Experimental Evaluations 39
5.1. Data collection 39
5.2. Evaluation metrics 39
5.3. Experiment setup 40
5.4. Experimental results of topical QA recommendation approaches using the tag-based topic grouping technique 43
5.5. Experimental results of GPTL-based approaches 47
5.6. Comparison of various recommendation methods 52
5.7. Discussions of our topic grouping techniques for topical QA recommendations 55
5.8. Discussions of incorporating weights for the factors used in GPTLR 56
6. Conclusion and Future Works 58
References 61
[1] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, 17 (6), 2005, pp. 734-749.
[2] G. Adomavicius, Y. Kwon, Improving aggregate recommendation diversity using ranking-based techniques, IEEE Transactions on Knowledge and Data Engineering, 24 (5), 2012, pp. 896-911.
[3] L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, INTRIGUE: Personalized recommendation of tourist attractions for desktop and hand held devices, Applied Artificial Intelligence, 17 (8), 2003, pp. 687-714.
[4] M. Balabanovi, Y. Shoham, Fab: Content-based, collaborative recommendation, Communications of the ACM, 40 (3), 1997, pp. 66-72.
[5] A.B. Barragáns-Martínez, E. Costa-Montenegro, J.C. Burguillo, M. Rey-López, F.A. Mikic-Fonte, A. Peleteiro, A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition, Information Sciences, 180 (22), 2010, pp. 4290-4311.
[6] C. Basu, H. Hirsh, W. Cohen, Recommendation as classification: Using social and content-based information in recommendation, Proceedings of the 15th National Conference on Artificial Intelligence, Madison, Wisconsin, USA, 1998, pp. 714-720.
[7] A. Bellogín, I. Cantador, P. Castells, A comparative study of heterogeneous item recommendations in social systems, Information Sciences, 221 (1), 2013, pp. 142-169.
[8] D. Billsus, M.J. Pazzani, Learning collaborative information filters, Proceedings of the 15th International Conference on Machine Learning, Madison, Wisconsin, USA, 1998, pp. 46-54.
[9] D. Billsus, M.J. Pazzani, User modeling for adaptive news access, User Modeling and User-Adapted Interaction, 10 (2-3), 2000, pp. 147-180.
[10] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, The Journal of Machine Learning Research, 3, 2003, pp. 993-1022.
[11] D.M. Blei, Probabilistic topic models, Communications of the ACM, 55 (4), 2012, pp. 77-84.
[12] R. Burke, Hybrid recommender systems: Survey and experiments, User Modeling and User-Adapted Interaction, 12 (4), 2002, pp. 331-370.
[13] I. Cantador, P. Castells, Group recommender systems: New perspectives in the social web, in: Recommender Systems for the Social Web, Springer, Berlin, 2012, pp. 139-157.
[14] R.S. Chen, Recommendation mechanisms for knowledge collections in communities of question-answering websites, in: Institute of Information Management, National Chiao Tung University, 2010.
[15] J. Cho, K. Kwon, Y. Park, Collaborative filtering using dual information sources, IEEE Intelligent Systems, 22 (3), 2007, pp. 30-38.
[16] I. Christensen, S. Schiaffino, Matrix factorization in social group recommender systems, Proceedings of the 12th Mexican International Conference on Artificial Intelligence, Mexico, Mexico, 2013, pp. 10-16.
[17] B. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval in Practice, Addison-Wesley, Boston, 2009.
[18] M. Gan, R. Jiang, Improving accuracy and diversity of personalized recommendation through power law adjustments of user similarities, Decision Support Systems, 55 (3), 2013, pp. 811-821.
[19] I. Garcia, L. Sebastia, E. Onaindia, C. Guzman, A group recommender system for tourist activities, in: T. Di Noia, F. Buccafurri (Eds.) E-Commerce and Web Technologies, Springer, Berlin, 2009, pp. 26-37.
[20] R. Gazan, Social Q&;A, Journal of the American Society for Information Science and Technology, 62 (12), 2011, pp. 2301-2312.
[21] N. Glance, D. Arregui, M. Dardenne, Knowledge pump: Community-centered collaborative filtering, Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary, 1998, pp. 83-88.
[22] C.-K. Huang, Complementary Q&;A document recommendations for communities of question-answering websites, in: Institute of Information Management, National Chiao Tung University, 2012.
[23] R. Jäschke, A. Hotho, F. Mitzlaff, G. Stumme, Challenges in tag recommendations for collaborative tagging systems, in: Recommender Systems for the Social Web, Springer, Berlin, 2012, pp. 65-87.
[24] A. Jameson, S. Baldes, T. Kleinbauer, Enhancing mutual awareness in group recommender systems, Proceedings of the IJCAI Workshop on Intelligent Techniques for Web Personalization, Menlo Park, California, USA, 2003, pp.1-8.
[25] A. Jameson, More than the sum of its members: Challenges for group recommender systems, Proceedings of the Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, 2004, pp. 48-54.
[26] X. Jin, C. Wang, J. Luo, X. Yu, J. Han, LikeMiner: A system for mining the power of 'like' in social media networks, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011, pp. 753-756.
[27] M.I. Jordan, Graphical models, Statistical Science, 19 (1), 2004, pp. 140-155.
[28] P. Jurczyk, E. Agichtein, Discovering authorities in question answer communities by using link analysis, Proceedings of the 16th ACM Conference on Information and Knowledge Management, Lisbon, Portugal, 2007, pp. 919-922.
[29] J.K. Kim, H.K. Kim, H.Y. Oh, Y.U. Ryu, A group recommendation system for online communities, International Journal of Information Management, 30 (3), 2010, pp. 212-219.
[30] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, J. Riedl, GroupLens: Applying collaborative filtering to Usenet news, Communications of the ACM, 40 (3), 1997, pp. 77-87.
[31] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, IEEE Computer, 42 (8), 2009, pp. 30-37.
[32] G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list, Management Science, 52 (7), 2006, pp. 1031-1042.
[33] H. Lieberman, Letizia: An agent that assists web browsing, Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, 1995, pp. 924-929.
[34] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Internet Computing, 7 (1), 2003, pp. 76-80.
[35] D.-R. Liu, Y.-Y. Shih, Integrating AHP and data mining for product recommendation based on customer lifetime value, Information &; Management, 42 (3), 2005, pp. 387-400.
[36] D.-R. Liu, C.-H. Lai, Y.-T. Chen, Document recommendations based on knowledge flows: A hybrid of personalized and group-based approaches, Journal of the American Society for Information Science and Technology, 63 (10), 2012, pp. 2100-2117.
[37] D.-R. Liu, Y.-H. Chen, W.-C. Kao, H.-W. Wang, Integrating expert profile, reputation and link analysis for expert finding in question-answering websites, Information Processing &; Management, 49 (1), 2013, pp. 312-329.
[38] D.-R. Liu, Y.-H. Chen, C.-K. Huang, QA document recommendations for communities of question–answering websites, Knowledge-Based Systems, 57, 2014, pp. 146-160.
[39] D.-R. Liu, Y.-H. Chen, M. Shen, P.-J. Lu, Complementary QA-network analysis for QA retrieval in social question-answering websites, Journal of the Association for Information Science and Technology, In Press, 2014.
[40] J. Liu, C. Wu, W. Liu, Bayesian probabilistic matrix factorization with social relations and item contents for recommendation, Decision Support Systems, 55 (3), 2013, pp. 838-850.
[41] X. Liu, W. Croft, M. Koll, Finding experts in community-based question-answering services, Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany, 2005, pp. 315-316.
[42] W.S. Lovejoy, A. Sinha, Efficient structures for innovative social networks, Management Science, 56 (7), 2010, pp. 1127-1145.
[43] T. Luostarinen, O. Kohonen, Using topic models in content-based news recommender systems, Proceedings of the 19th Nordic Conference of Computational Linguistics, Oslo, Norway, 2013, pp. 239-251.
[44] H. Ma, I. King, M.R.-T. Lyu, Mining web graphs for recommendations, IEEE Transactions on Knowledge and Data Engineering, 24 (6), 2012, pp. 1051-1064.
[45] Q. Ma, K. Tanaka, Topic-structure-based complementary information retrieval and its application, ACM Transactions on Asian Language Information Processing, 4 (4), 2005, pp. 475-503.
[46] J.F. McCarthy, T.D. Anagnost, MusicFX: An arbiter of group preferences for computer supported collaborative workouts, Proceedings of the ACM Conference on Computer Supported Cooperative Work, Seattle, Washington, USA, 1998, pp. 363-372.
[47] K. McCarthy, L. McGinty, B. Smyth, M. Salamo, Social interaction in the CATS group recommender, Workshop on the Social Navigation and Community based Adaptation Technologies, Dublin, Ireland, 2006, pp.1-10.
[48] K.K. Nam, M.S. Ackerman, L.A. Adamic, Questions in, knowledge in?: A study of naver's question answering community, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, Massachusetts, USA, 2009, pp. 779-788.
[49] L. Nie, B.D. Davison, X. Qi, Topical link analysis for web search, Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, 2006, pp. 91-98.
[50] M. O'Connor, D. Cosley, J.A. Konstan, J. Riedl, PolyLens: A recommender system for groups of users, Proceedings of the 7th Conference on European Conference on Computer Supported Cooperative Work, Bonn, Germany, 2001, pp. 199-218.
[51] E.R. Omiecinski, Alternative interest measures for mining associations in databases, IEEE Transactions on Knowledge and Data Engineering, 15 (1), 2003, pp. 57-69.
[52] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the web, Technical Report, Stanford Digital Library Technologies Project, 1998, pp.1-17.
[53] J. Parapar, A. Bellogín, P. Castells, Á. Barreiro, Relevance-based language modelling for recommender systems, Information Processing &; Management, 49 (4), 2013, pp. 966-980.
[54] M. Pazzani, D. Billsus, Learning and revising user profiles: The identification of interesting web sites, Machine Learning, 27 (3), 1997, pp. 313-331.
[55] M. Pazzani, D. Billsus, Content-based recommendation systems, in: P. Brusilovsky, A. Kobsa, W. Nejd (Eds.) The Adaptive Web, Springer, Berlin, 2007, pp. 325-341.
[56] M.S. Pera, Y.-K. Ng, A group recommender for movies based on content similarity and popularity, Information Processing &; Management, 49 (3), 2013, pp. 673-687.
[57] L. Quijano-Sanchez, J.A. Recio-Garcia, B. Diaz-Agudo, Personality and social trust in group recommendations, Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 121-126.
[58] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews, Proceedings of ACM Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina, USA, 1994, pp. 175-186.
[59] P. Resnick, H.R. Varian, Recommender systems, Communications of the ACM, 40 (3), 1997, pp. 56-58.
[60] C.J.V. Rijsbergen, Information Retrieval, 2nd ed., Butterworth-Heinemann, London, 1979.
[61] B. Saha, L. Getoor, Group proximity measure for recommending groups in online social networks, 2nd ACM SIGKDD Workshop on Social Network Mining and Analysis, Las Vegas, Nevada, USA, 2008, pp. 1-9.
[62] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing &; Management, 24 (5), 1988, pp. 513-523.
[63] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of recommendation algorithms for e-commerce, Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, Minnesota, USA, 2000, pp. 158-167.
[64] C. Shah, S. Oh, J.S. Oh, Research agenda for social Q&;A, Library &; Information Science Research, 31 (4), 2009, pp. 205-209.
[65] U. Shardanand, P. Maes, Social information filtering: Algorithms for automating "word of mouth", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, Colorado, USA, 1995, pp. 210-217.
[66] J. Shen, W. Shen, X. Fan, Recommending experts in Q&;A communities by weighted HITS algorithm, International Forum on Information Technology and Applications, Chengdu, China, 2009, pp. 151-154.
[67] C. Shin, W. Woo, Socially aware TV program recommender for multiple viewers, IEEE Transactions on Consumer Electronics, 55 (2), 2009, pp. 927-932.
[68] S.K. Shin, W. Kook, Can knowledge be more accessible in a virtual network?: Collective dynamics of knowledge transfer in a virtual knowledge organization network, Decision Support Systems, 59, 2014, pp. 180-189.
[69] H. Sorensen, M.M. Elligott, PSUN: A profiling system for Usenet news, Proceedings of the CIKM 95 Workshop on Intelligent Information Agents, Baltimore, Maryland, USA, 1995, pp. 205-211.
[70] E.I. Sparling, S. Sen, Rating: How difficult is it?, Proceedings of the 5th ACM Conference on Recommender Systems, Chicago, Illinois, USA, 2011, pp. 149-156.
[71] M. Steyvers, T. Griffiths, Probabilistic topic models, in: T.K. Landauer, D.S. McNamara, S. Dennis, W. Kintsch (Eds.) Handbook of Latent Semantic Analysis, Psychology Press, London, 2007.
[72] X. Sun, H. Lin, Topical community detection from mining user tagging behavior and interest, Journal of the American Society for Information Science and Technology, 64 (2), 2013, pp. 321-333.
[73] H. Toba, Z.-Y. Ming, M. Adriani, T.-S. Chua, Discovering high quality answers in community question answering archives using a hierarchy of classifiers, Information Sciences, 261 (10), 2014, pp. 101-115.
[74] C. Wang, D.M. Blei, Collaborative topic modeling for recommending scientific articles, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011, pp. 448-456.
[75] Z. Wang, L. Sun, W. Zhu, S. Yang, H. Li, D. Wu, Joint social and content recommendation for user-generated videos in online social network, IEEE Transactions on Multimedia, 15 (3), 2013, pp. 698-709.
[76] Weka, Data Mining Software, in: http://www.cs.waikato.ac.nz/ml/weka.
[77] Z. Yu, X. Zhou, D. Zhang, An adaptive in-vehicle multimedia recommender for group users, Proceedings of IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 2005, pp. 2800-2804.
[78] Z. Yu, X. Zhou, Y. Hao, J. Gu, TV program recommendation for multiple viewers based on user profile merging, User Modeling and User-Adapted Interaction, 16 (1), 2006, pp. 63-82.
[79] J. Zhang, M. Ackerman, L. Adamic, Expertise networks in online communities: Structure and algorithms, Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta, Canada, 2007, pp. 221-230.
[80] J. Zhang, M. Ackerman, L. Adamic, K. Nam, QuME: A mechanism to support expertise finding in online help-seeking communities, Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, Newport, Rhode Island, USA, 2007, pp. 111-114.
[81] Z. Zhang, Q. Li, D. Zeng, H. Gao, Extracting evolutionary communities in community question answering, Journal of the Association for Information Science and Technology, 65 (6), 2014, pp. 1170-1186.
[82] H. Zhu, E. Chen, H. Xiong, H. Cao, J. Tian, Ranking user authority with relevant knowledge categories for expert finding, World Wide Web, 2013, pp. 1-27.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top