跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉昌紋
研究生(外文):Liu, Chang-Wen
論文名稱:基於心電圖的情緒壓力分析系統
論文名稱(外文):Mental Stress Analysis System Based on Electrocardiogram
指導教授:鄭慕德
指導教授(外文):Jeng, Mu-Der
口試委員:李明義郭重顯鄭慕德
口試委員(外文):Lee, Ming-yihKuo, Chung-HsienJeng, Mu-Der
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:52
中文關鍵詞:心電圖心率變異自律神經系統精神壓力功率頻譜密度
外文關鍵詞:electrocardiogram(ECG)heart rate variability(HRV)autonomic nervous systemmental stresspower spectral density(PSD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:801
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代人所承受的壓力比以前高出許多。面對生活週遭環境的問題,壓力更是難以計數,適當的壓力可使人生理及心理保持良好的狀態,但環境中所產生的壓力往往都不是暫時性,因為壓力沒有得到適當的抒發或問題沒有得到解決,就會長期累積壓力,導致生理及心理會出現一些症狀和疾病。而壓力一旦長期累積就會影響自律神經,造成自律神經失調,進而產生各種疾病。壓力是無法避免的,因此,如何了解管理壓力是現今社會中非常重要的議題。

有關精神壓力的負荷程度以往一般常用壓力知覺量表來評估。本論文研究提出了一個基於心電圖的情緒壓力分析系統。利用心率變異各頻帶能量的變化,可分析人體生理反應與自律神經系統的關連性,因人在不同程度的情緒壓力下會影響交感神經與副交感神經的活動強弱。本研究利用心電圖的心率變異之功率頻譜密度進行分析,藉以觀察其自律神經系統之變化。實驗結果顯示,在精神壓力下,高頻功率成份比(HF%)會明顯下降,低頻功率成份比(LF%)與低高頻功率比(LF/HF)明顯上升。當精神壓力減少時,低頻功率成份比(LF%)與低高頻比功率(LF/HF)則會明顯下降,高頻功率成份比(HF%)會明顯增加。這些變化可作為評估精神壓力狀態的指標,進而作為班表安排的參考, 甚至可輔助臨床相關檢測與診斷。

Along with the mental stress of modern is higher than the previous, it is difficult to count while we face the problem of living surroundings. Althoug appropriate stress allows people to maintain good physical and mental condition, but the stress generated by the environment often are not temporary. If stress is not adequately expressed or problems not resolved, it will be accumulated continually ,then lead to physical and psychological symptoms and diseases. The stress of long-term accumulation will affect the autonomic nervous system, autonomic nervous system disorders caused, and produce a variety diseases. Stress is inevitable, to understand how to manage stress in today's society is a very important issue.

Regarding the stress analysis in the past commonly used to assess by the Perceived Stress Scale. This thesis proposes an emotional stress analysis system is based on electrocardiogram (ECG). Using spectral analysis of heart rate variability(HRV)to assess the regulation of autonomic nervous system. It could reveal the correlation between the physiological response and autonomic nervous system via the energy change in different frequency bands,because people at different levels of emotional stress affects the sympathetic nerve and parasympathetic nerve activity strength.This study is using Power spectral density (PSD) to analyze HRV and observe changes in their autonomic nervous system . The results show that mental stress is applied, the high frequency power proportion (HF%) of HRV were decreased, the low frequency power proportion (LF%) and the low to high frequency power ratios(LF/HF)were increased significantly. The LF/HF ratios were decreased significantly during mental stress is removed. When reducing mental stress, low-frequency power proportion (LF%) compared and the low to high frequency power ratios(LF/HF) are significantly decreased, the high-frequency power proportion (HF%) will be significantly increased. These changes can be used as indicators to assess the status of mental stress, and thus as a reference for work shift arrangements, even helpful to assess detection and diagnosis of clinically relevant .

誌謝 I
摘要 II
Abstract III
目次 IV
圖目次 VI
表目次 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究方法 3
1.5 論文架構 3
1.6 本論文之貢獻 4
第二章 研究背景與文獻回顧 5
2.1 心電圖的發現 5
2.2心臟循環及電氣傳導系統 5
2.3 心電圖原理與波形 7
2.3.1 量測心電圖的十二導極 9
2.3.2 增大導極 10
2.3.3 胸導極 11
2.3.4 十二導程心電圖波形 11
2.4 心律變異分析 12
2.4.1時域分析 12
2.4.2頻域分析 12
2.5文獻回顧 13
2.5.1 QRS波偵測演算法 13
2.5.2 心電圖之HRV時域分析 14
第三章 系統整體設計 17
3.1 系統架構 17
3.2 心電圖擷取電路 17
3.3 QRS 複合波偵測演算法 23
3.4 心率訊號的轉換 26
3.5 心率變異分析程式 27
第四章 實測結果與分析 30
4.1 實驗介紹 30
4.1.1硬體電路板介紹 30
4.1.2裝置系統操作說明 31
4.2實驗對象一之量測程序 34
4.3實驗對象一之統計分析 34
4.4實驗對象二之量測程序 45
4.5實驗對象二之統計分析 45
第五章 結論與未來展望 47
5.1結論 47
5.2未來展望 47
參考文獻 48
附錄 52

圖目次
圖1心臟循環系統[8] 6
圖2心臟電訊號傳導圖[8] 6
圖3心電圖量測示意圖[8] 7
圖4心電圖波形[8] 8
圖5標準肢導極量測位置[8] 10
圖6增大導極量測位置[8] 10
圖7胸導極量測位置[8] 11
圖8十二導程心電圖波形[8] 11
圖9心率頻譜圖[26] 15
圖10系統架構圖 17
圖 11 類比電路設計方塊圖 19
圖12 儀表放大器 20
圖13二階高通濾波器 21
圖14二階低通濾波器 21
圖 15 60HZ 帶拒濾波器 22
圖16後級放大器 22
圖17 WILLIS J.TOMPKINS QRS波偵測演算法流程圖 23
圖18 ECG 原始訊號(BLUE)ECG 斜率(GREEN) 24
圖19 ECG 原始訊號(GREEN)ECG 斜率平方化(BLUE) 24
圖20 ECG 原始訊號(GREEN)擷取出之R 波(BLUE)所在位置 26
圖21 RR INTERVAL 的示意圖[39] 26
圖22訊號轉換HRV訊號示意圖[39] 27
圖23心率變異分析流程圖. 28
圖24 ECG訊號擷取類比電路板(左)與DSPIC30F4011開發板(右) 30
圖25示波器量測硬體擷取出的ECG類比訊號 30
圖26 RA,LA與RL導線貼片黏貼位置圖 31
圖27 NOTEBOOK 與電路板連接 31
圖28 顯示量測之ECG波形 32
圖29 LOG出來的檔案名稱(左)與其內容為ECG的ADC資料(右) 32
圖30偵測QRS波之R點的部分程式(左)與計算出的RRI值(右) 33
圖31 HRVAS 的HRV 分析軟體介面圖 33
圖32 受測者1三個不同時段心電訊號的高低頻功率成份比變化 35
圖33受測者1三個不同時段心電訊號的低高頻功率比變化 35
圖34受測者2三個不同時段心電訊號的高低頻域功率成份比變化 36
圖35受測者2三個不同時段心電訊號的低高頻功率比變化 36
圖36受測者3三個不同時段心電訊號的高低頻域功率成份比變化 37
圖37受測者3三個不同時段心電訊號的低高頻功率比變化 37
圖38受測者4三個不同時段心電訊號的高低頻域功率成份比變化 38
圖39受測者4三個不同時段心電訊號的低高頻功率比變化 38
圖40受測者5三個不同時段心電訊號的高低頻域功率成份比變化 39
圖41受測者5三個不同時段心電訊號的低高頻功率比變化 39
圖42受測者6三個不同時段心電訊號的高低頻域功率成份比變化 40
圖43受測者6三個不同時段心電訊號的低高頻功率比變化 40
圖44受測者7三個不同時段心電訊號的高低頻域功率成份比變化 41
圖45受測者7三個不同時段心電訊號的低高頻功率比變化 41
圖46受測者8三個不同時段心電訊號的高低頻域功率成份比變化 42
圖47受測者8三個不同時段心電訊號的低高頻功率比變化 42
圖48受測者9三個不同時段心電訊號的高低頻域功率成份比變化 43
圖49受測者9三個不同時段心電訊號的低高頻功率比變化 43
圖50受測者10三個不同時段心電訊號的高低頻域功率成份比變化 44
圖51受測者10三個不同時段心電訊號的低高頻功率比變化 44
圖52空服員三個不同時段心電訊號的低高頻功率成份比變化 46
圖53空服員三個不同時段心電訊號的低高頻功率比變化 46

表目次
表1心率變異性分析常用的頻域指標 13
表2心律變異測量參數、生理意義、健康範圍值 16
表3量測參數影響說明 16
表4各種雜訊干擾 18
表5飛機維修人員三個不同時段心電訊號的高低頻域能量個別變化 34
表6空服員三個不同時段心電訊號的頻域分析 45



[1]Nolan J., Batin PD, Andrews R., “A prospective study of heart rate variability and mortality in chronic heart failure: results of the UK HeartFailure Evaluation and Assessment of Risk Trial,” Circulation; vol. 98,pp. 1510-6, 1998.
[2]L. MT, B. JT, Jr, M. FI, “Baroreflex senditivity and heart rate variability
is prediction of total cardiac mortality after myocardial infarction,”
Lancet, vol. 351, pp. 478-84, 1998.
[3]Malik M., “Task force of European Society of Cardiology and the North
American Society of Pacing and Electrophysiology:heart rate variability,
66 standards of measurement, physiological interpretation and clinical use,”
Circulation, vol. 93, pp. 1043-65, 1996.
[4]Y. Kuriyagawa, I. Kageyama, “A Modeling of Heart Rate variability to
Estimate Mental Work Load,” IEEE International Conference, vol. 21, pp.
294-299, 1999.
[5]Lellamo. F., Legramante. J. M., “Spontaneous baroreflex modulation of
heart rate and heart rate variability during orthostatic stress in tetraplegics
and healthy subjects,” J. Hypertens, vol. 19, pp. 2231-2240, 2001.
[6] Pagani. M, Lombardi. F., “Power spectral analysis of heart rate and
arterial pressure variabilities as a marker of sympathovagal interaction in
man and conscious dog,” Circ. Res. vol.58, pp. 178-193, 1986.
[7]劉千瑜,「 以心率變異觀測自律神經長期變化趨勢之探討-以研究生長期壓力個案為例」,中臺科技大學健康產業管理研究所碩士論文, 2011。
[8]Wikipedia http://simple.wikipedia.org/wiki/Main_Page
[9] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmiac database,” IEEETrans. Biomed. Eng. 33:pp1157-1165, 1986.
[10]J. Lee, K. Jeong, J. Yoon; M. Lee, ”A Simple Real-Time QRS Detection Algorithm,” 18th Annual Intern. Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, pp. 1396-1398, Nov. 1996.
[11]H.H. So, K.L. Chan, “Development of QRS detection method for real-time ambulatory cardiac monitor,” Proceedings of the 19th Annual International Conference of the IEEE in Engineering in Medicine and Biology society, Vol. 1, pp. 289-292, Oct. 1997.
[12]Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso,“Applications of artificial neural networks for ECG signal detection and classification,” J. Electrocardiology 26 (Suppl.):66-73, 1993.
[13]J. Y. Cheung and S. Hull Jr. "Detection of abnormal electrocardiograms using a neural network approach", Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., pp.2015 -2016 1989.
[14]Q. Z. Xue , Y. H. Hu and W. J. Tompkins "Training of ECG signals in neural network pattern recognition", Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., pp.1465 -1466 1990
[15] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, “ECGbeat detection using filter banks,” IEEE Trans. Biomed. Eng.46:192-202, 1999.
[16]D. Ebenezer and V. Krishnamurthy, "Wave digital matched filter for electrocardiogram preprocessing", IEEE Trans. Biomed Eng.,vol. 15 , pp.132 -134, 1993.
[17]Fei Zhang and Ying Wei ; Yong Lian.” Detection of QRS complex in electrocardiogram signal by the empirical mode decomposition,” IEEE International Symposium on Circuits and Systems,pp 1473 – 1476,2009.
[18]M. Bahoura, M. Hassani, and M. Hubin, “DSP implementation ofwavelet transform for real time ECG wave forms detection and heart rate analysis,” Comput. Methods Programs Biomed. 52(1):35-44,1997.
[19]C. Li , C. Zheng and C. Tai "Detection of ECG Characteristic Points Using Wavelet Transforms", IEEE Trans. Biomed. Eng., vol. 39, pp.317 -329, 1992
[20]林欣怡, 以小波轉換為基礎之心電圖雜訊消除及R波偵測, 國立清華大學
電機工程學系研究所碩士論文, 2012.
[21]Schuck, A. and Wisbeck, J.O “QRS detector pre-processing using the complex wavelet transform”, IEEE International Conference, Vol.3,pp.2590 – 2593,2003.
[22]C. Li , C. Zheng and C. Tai "Detection of ECG Characteristic Points Using Wavelet Transforms", IEEE Trans. Biomed. Eng., vol. 42, pp.21 -27 1995
[23] Xing Hongyan and Huang Minsong,” A New QRS Detection Algorithm Based on Empirical Mode Decomposition,” 2011 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA),2011.
[24]Bouabida, Z;Slimane, Z.E.H. ; Reguig, F.B.” Detection of QRS complex in electrocardiogram signal by the empirical mode decomposition,”, 2011 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA),pp25-28,2011
[25]WeiFang Zhu and Heming Zhao ; XiaoPing Chen.” A new QRS detector based on empirical mode decomposition,” 2010 IEEE 10th International Conference on Signal Processing (ICSP),pp1-4,2010.
[26]Marquette Electronics, Heart Rate Variability Physician’s Guide, West Tower Avenue Milwaukee, 1992
[27]J. P. Saul, “Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow”, News Physiol. Sci., Vol. 5, pp. 32-37, 1990
[28]M. Pagani, O. Rimoldi, P. Pizzinelli, R. Furlan, W. Crivellaro, D. Liberati, S. Cerutti, A. Malliani, “Assessment of the neural control of the circulation during psychological stress", Journal of the Autonomic Nervous System, Vol. 35, pp. 33-42, 1991
[29]陳書鋒,「基於心電圖及皮膚電活動辨識情緒的研究」, 國立中正大學電機工程研究所碩士論文,2000。
[30]傅傳志. 「以心率變異與體溫特性評估環境與精神壓力對自律神經系統調節之研究」, 逢甲大學自動控制工程學系碩士班碩士論文, 2006。
[31]V. Shusterman, O. Barnea, “Sympathetic nervous system activity in stress and biofeedback relaxation", IEEE Engineering in Medicine and Biology Magazine, pp. 52-57, March/April, 2005.
[32]臺灣科學地股份有限公司 (2004)。身心健康的支柱-自律神經系統。取自:
http://taiwanscientific.com.tw/
[33]陳淑如、蔡月霞、羅映琪、蔡宜珊、鄭綺。心率變異度的簡介及護
理上的應用。新臺北護理期刊,7 (1),pp1-11,2005.
[34]N. Hjortskov, D. Riss#westeur042#n, A. Blangsted, N. Fallentin, U. Lundberg and K.
S#westeur057#gaard. The effect of mental stress on heart rate variability and blood stress during computer work. Journal of Appl Physiol, 92, 84-89,2004.
[35]王群光.自律神經失調HRV 檢測及治療衛教手冊;臺灣自律神經健
康推廣協會,2010.
[36]Yukinori Suzuk, “Self-organizing QRS-Wave Recognition in ECG Using Neural Networks” , IEEE Transaction on Neural Networks, VOL. 6, NO. 6, pp1469-1477, NOVEMBER 1995.
[37]S.K.Mukhopadhyay, M.Mitra, S.Mitra, “Time Plane ECG Feature Extraction Using Hilbert Transform, Variable Threshold and Slope Reversal Approach” , IEEE Confference Puplications, 2011.
[38]J Pan, Willis J. Tompkins, “A Real-Time QRS Detection Algorithm” ,
IEEE Transactions on Biomedical Engineering, VOL. BME-32, NO.
3,pp.230-236, MARCH 1985.
[39]張英輝,「手持式即時心率變異分析儀」,朝陽科技大學資訊工程系研究所碩士論文,2012。
[40] G. D. Clifford, L. Tarassenko, “Quantifying errors in spectral estimayes of HRV due to beat replacement and resampling", IEEE Transactions On Biomedical Engineering, Vol. 52, No. 4, pp. 630-638, 2005.
[41] Andreas Spanias, Digital Spectral Analysis, Arizona State University
Lecture, 2002
[42]John T. Ramshur, “Design, Evaluation, and Application of Heart Rate Variability Software (HRVAS).” A Thesis Presented for the Master of Science
Degree The University of Memphis, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊