|
1、Esfand, R. and D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 2001. 6(8): p. 427-436. 2、Kunath, K., et al., Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. Journal of Controlled Release, 2003. 89(1): p. 113-125. 3、Nimesh, S., R. Kumar, and R. Chandra, Novel polyallylamine-dextran sulfate-DNA nanoplexes: Highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics, 2006. 320(1-2): p. 143-149. 4、Pathak, A., et al., Engineered polyallylamine nanoparticles for efficient in vitro transfection. Pharmaceutical Research, 2007. 24(8): p. 1427-1440. 5、Saul, J.M., et al., Multilayer nanocomplexes of polymer and DNA exhibit enhanced gene delivery. Advanced Materials, 2008. 20(1): p. 19-+ 6、Jiang, X., et al., Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. The Journal of Gene Medicine, 2006. 8(4): p. 477-487. 7、Kleemann, E., et al., Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release, 2005. 109(1-3): p. 299-316. 8、Park, I.K., et al., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release, 2001. 76(3): p. 349-362. 9、Trubetskoy, V.S., et al., Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles. Nucleic Acids Research, 1999. 27(15): p. 3090-3095. 10、Trubetskoy, V.S., et al., Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Therapy, 2003. 10(3): p. 261-271 11、YC Chung et al., Polycation/DNA complexes coated with oligonucleotides for gene delivery. Biomaterials, 2010. 31 p.4194–4203 12、Kim, J., et al., Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Advanced Materials, 2008. 20(3): p. 478-+. 13、Lai, C.W., et al., Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small, 2008. 4(2): p. 218-224. 14、Lin, P.C., et al., Surface modification of magnetic nanoparticle via Cu(I)-Catalyzed alkyne-azide [2+3] cycloaddition. Organic Letters, 2007. 9(11): p. 2131-2134. 15、Makhluf, S.B.D., et al., Modified PVA-Fe3O4 nanopartictes as protein carriers into sperm cells. Small, 2008. 4(9): p. 1453-1458. 16、Wagner, K., et al., Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Applied Organometallic Chemistry, 2004. 18(10): p. 514-519. 17、H. Herweijer and J. Wolff, Progress and prospects: naked DNA gene transfer and therapy, Gene Ther., 2003. 10: p. 453–458. 18、T. Niidome and L. Huang, Gene therapy progress and prospects: nonviral vectors, Gene Ther., 2002. 9: p. 1647–1652. 19、O. Boussif, T. Delair, C. Brua, L. Veron, A. Pavirani and H.V.J. Kolbe, Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro, Bioconjugate Chem., 1999. 10: p. 877–883. 20、Douglas, K. L., Piccirillo, C. A., and Tabrizian, M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm, 2008. 68: p. 676–687 21、Chithrami, B. D., and Chan, W. C. W. Elucidating the mechanism of cellular uptake and the removal of proteincoated gold nanoparticles of different sizes and shapes. Nano Letters, 2007. 7 : p.1542–1550. 22、Goncalves C et al., Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther, 2004. 10: p.373-85. 23、Tessa Lu¨hmann et al., Cellular Uptake and Intracellular Pathways of PLL-g-PEG-DNA Nanoparticles. Bioconjugate Chem., 2008, 19, p. 1907–1916 24、Conner, S.D. and S.L. Schmid, Regulated portals of entry into the cell. Nature, 2003. 422(6927): p. 37-44. 25、Luhmann, T., et al., Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjugate Chemistry, 2008. 19(9): p. 1907-1916 26、van der Aa M, Huth US, Hafele SY, Schubert R, Oosting RS, Mastrobattista E, et al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res, 2007. 24 : p. 1590-8. 27、Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., and Wakeham, D. E..Biological basket weaving: formation and function of clathrin-coated vesicles. Annu.Rev. Cell Dev. Biol., 2001. 17: p. 517 – 568. 28、P.U. Le, I.R. Nabi, Distinct caveolae-mediated endocytic pathways target the golgi apparatus and the endoplasmic reticulum, J. Cell Sci., 2003. 1166: p.1059–1071. 29、Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell, 2002. 13: p. 238–250. 30、Pelkmans, L., and Helenius, A. Endocytosis via caveolae. Traffic, 2002 3: p.311 – 320. 31、Grimmer, S., van Deurs, B., and Sandvig, K.. Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J. Cell Sci., 2002. 115: 2953 – 2962. 32、劉仲明、郭東瀛, 競逐原子世界 奈米材料 2002 33、徐善慧, 競逐原子世界 奈米生物醫學 2002 34、Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine, 2007. 2 : p.23-39. 35、Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L.Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast materials for MR imaging. Radiology, 1990. 175: p.489–93. 36、Corot C, Robert P, Ide’e JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Delivery Rev, 2006. 58: p.1471–504. 37、Jung CW. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging, 1995. 13: p.675–91. 38、Jung CW, Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging, 1995. 13: p.661–74. 39、A. Subtil, A. Hemar, A. Dautry-Varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, J. Cell Sci., 1994. 10712 : p.3461–3468 40、T. Aoki, R. Nomura, T. Fujimoto, Tyrosine phosphorylation of caveolin-1 in the endothelium, Exp. Cell Res., 1999. 2532 : p.629–636.
|