跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙有民
研究生(外文):You-Min Jau
論文名稱:智慧型計算在非可加系統之應用
論文名稱(外文):Intelligent Computing for Non-Additive Systems
指導教授:蘇國嵐鄭錦聰鄭錦聰引用關係
指導教授(外文):Kuo-Lan SuJin-Tsong Jeng
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:108
中文關鍵詞:一般測度模糊積分量子化粒子群優法非可加系統智慧型計算
外文關鍵詞:General measureFuzzy integralQPSO algorithmNon-additive systemIntelligent computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當分析一個具有多重輸入訊息的系統時,系統某一特定輸出之特性與哪些輸入訊息間具有依賴性,這樣的關連結構必須予以慎重考慮,本質上這類系統便屬於資訊融合系統。傳統上最常使用的處理方式乃是以加權平均與線性回歸方式作為輸入信息之融合工具。這些線性融合的方法之所以能妥善運行,都是基於系統之輸入訊息間彼此皆是獨立且無交互作用的假設下。然而,絕大多數的實務問題上,系統之輸出都是輸入訊息間彼此交互作用所產生的合成效應。例如,行為導向的智慧型機器人系統、天氣預報系統…等。這些都是必須考慮輸入訊息間交互作用的系統,而且本質上此一交互作用並非單純地加總行為所能描述。因此,當處理此類系統時,就必須引用具有非可加特性之非線性積分,方能適切地將問題予以模型化。同時,如欲精確地估算出模型的參數,適當的系統觀測數據也是不可缺。將可用之觀測數據引入模型用以估算模型之參數,此實屬於非線性規劃之問題。因此,適當地選用高效率的智慧型計算技巧也是相當重要的研究課題。
在本論文中,引用以 Choquet 積分為核心的非線性多變數回歸模型來處理此類非可加系統,並針對不同型態的輸入訊息,以不同形式之模型予以妥善描述。有鑒於觀測數據引入模型後將執行龐大的計算,本論文採用具量子行為之粒子群優化演算法(QPSO),並予以修改而命名為 MQPSO 演算法作為基礎模型參數的估算工具。此一修改乃將基因演算法的精英交配的概念融入 QPSO 演算法中,以加速演算法收斂至最佳解。但對一般化的非線性多變數回歸模型而言,需要更多的參數才能將系統妥善地描述。因此再將 MQPSO 演算法予以改良,此一改進乃針對原為線性遞減的步長係數 ,調整為非線性衰變,此一衰變模式相似於模擬退火演算法,故將改良後的演算法命名為 MQPSO-NLB 演算法。得到初步成效後,更進一步地將模型擴展成可以處理離異點隨機發生之結構,這樣的模型方能與實務上之非可加系統相符合。也因為考慮到離異點發生時,勢必將造成所估計的模型參數偏離實際值,因此,引入具有高容許誤差的最小截斷平方(LTS)運算子,用以消除離異點所產生的偏離效應。由第一階段的模擬結果中可看出,MQPSO 演算法相較於基因演算法確實更有效率。此外,為因應非可加系統模型受到離異點干擾後所引發之效應,本論文再將 MQPSO 演算法進一步改良,即融入 LTS 運算子,形成名為 LTS-MQPSO-NLB 演算法。同樣地透過模擬分析與實際問題測試,均可得到相當準確之結果。
To analyze a system with many attributes, we always need to recognize how a specified objective attribute depend on other attributes. It is essential a frequent problems in information fusion. Traditionally, the most common aggregation tools are the weighted average method and the linear regression. These methods are all linear and must make a basic assumption that there are no interactions among predictive attributes. However, in many real-world problems such as a behavior-based intelligent mobile robot, the weather forecast, etc., the inherent interaction among predictive attributes must be considered circumspectly; meanwhile, these kinds of problems are essential non-additive systems. Hence, a nonlinear integral model with respective to a non-additive set function is suitable for dealing with these kinds of problems. In general, these kinds of models constitute over-determined systems with nonlinear integrals and then, it is extremely difficult to acquire the analytic solution. Therefore, an efficiently intelligent computing technique is necessary for these models to perform precise estimations of model’s parameter.
In this dissertation, different nonlinear multi-regression models based on the Choquet integral (NMRCI) are considered for modeling non-additive systems with different type of predictive attributes, respectively. Meanwhile, the parameters estimation for the simplest model is also performed via a modified particle swarm optimization with quantum-behavior (MQPSO) algorithm, in which the mechanism of multi-elitist crossover is included and then, concepts of elitist reproductions and adaptive decay are introduced to improve the MQPSO algorithm such that the generalized NMRCI model can be estimated well. That is, the genetic algorithm (GA) and the simulated annealing (SA) algorithm are embedded in the improved algorithm which is named MQPSO with nonlinear creative coefficient (MQPSO-NLB) algorithm. Furthermore, the effects which are caused from outliers are also considered for extending these proposed NMRCI models such that the extended model can model a real-world non-additive system well. Meanwhile, to efficiently estimate the extended model parameters, the robustness of the proposed MQPSO-NLB algorithm must be gained. Therefore, the high breakdown regression estimator, least trimmed squares (LTS) is then introduced to eliminate the deviations caused by the observations contaminated with outliers. That is, the LTS estimator is instead of the LS estimator in the MQPSO-NLB algorithm and then, the proposed intelligent computing algorithm which combines the mechanisms of the GA, the SA algorithm and the LTS estimator into the QPSO algorithm named LTS-MQPSO-NLB algorithm can deal with the generalized NMRCI model with contaminated observations for a non-additive system with outliers. From the numerical simulations, satisfied results can be achieved.
Chinese Abstract i
English Abstract iii
Acknowledgments v
Contents vi
List of Tables viii
List of Figures x

Chapter 1 Introduction 1
1.1 Literature Survey 1
1.2 Motivation and Contributions 4
1.3 Organization of the Dissertation 5

Chapter 2 Preliminary Background and Problem Definition 6
2.1 The non-additive set functions 7
2.1.1 The fuzzy measure 7
2.1.2 The -fuzzy measure 8
2.1.3 The possibility measure 9
2.1.4 The -order additive measure 10
2.1.5 The measure 12
2.1.6 The general measure 14
2.2 The nonlinear integrals 16
2.2.1 The Choquet integral 16
2.2.2 The Sugeno integral 19
2.2.3 The upper integral 21
2.3 The Least Trimmed Squares Estimator 26
2.3.1 The initial -subset 28
2.3.2 The initial C-step 30
2.2.3 The nested extensions 33
2.4 The proposed NMRCI models for the non-additive systems 36
Chapter 3 The Modified Particle Swarm Optimization algorithm with Quantum Behavior 42
3.1 The traditional PSO algorithm 42
3.2 The PSO algorithm with time-varying inertia weight 43
3.3 The PSO algorithm with time-varying cognitive and social parameters 44
3.4 The PSO algorithm with quantum behavior 47
3.5 A modified QPSO algorithm with nonlinear creative coefficient 50

Chapter 4 Parameter estimations for the non-additive systems under the NMRCI models with modified QPSO algorithms 58
4.1 Parameter estimations for the non-additive systems under the original NMRCI models 58
4.2 Parameter estimations for the non-additive systems under the weighted and generalized NMRCI models 62
4.3 Simulation results 63

Chapter 5 Modeling of the non-additive systems with outliers under the NMRCI models with the robust intelligent computing algorithm 78
5.1 Two stage structure for the non-additive systems with outliers under the NMRCI models 78
5.2 The robust intelligent computing algorithm for the non-additive systems with outliers under the NMRCI models 81
5.3 Simulation results 84

Chapter 6 Conclusions and Discussions 96

Summary 99
References 100
Autobiography 107
Publications 108
[1]H. Hasheminia and S. T. A. Niaki, 2006, “A genetic algorithm approach to find the best regression/econometric model among the candidates,” Applied Mathematics and Computation, vol. 183, pp. 337-349.
[2]R. R. Yang, 1986, “On ordered weighted averaging aggregation operators in multicriteria decision making,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, pp. 183-190.
[3]G. Choquet, 1953, “Theory of capacities,” Annales de l''Institut Fourier, vol. 5, pp. 131–295.
[4]H. C. Liu, Y. C. Tu, C. C. Chen and W. S. Weng, 2008, “The Choquet integral with respect to measure based on support,” Proceedings of the 7th International Conference on Machine Learning and Cybernetics, Kunming, pp. 3602-3606.
[5]Z. Wang, K. S. Leung, M. L. Wong, J. Fang and K. Xu, 2000, “Nonlinear nonnegative multi-regressions based on Choquet integrals,” International Journal of Approximate Reasoning, vol. 25, pp. 71-87.
[6]K. Xu, Z. Wang, M. L. Wong and K. S. Leung, 2001, “Discover dependency pattern among attributes by using a new type of nonlinear multi-regression,” International Journal of Intelligent Systems, vol.16, no. 8, pp. 949-962.
[7]K. S. Leung, M. L. Wong, W. Lam, Z. Wang and K. Xu, 2002, “Learning nonlinear multi-regression networks based on evolutionary computation,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 32, no. 5, pp. 630-643.
[8]C. J. Wu, C. N. Ko, Y. Y. Fu, and C. H. Tseng, 2009, “A genetic-based design of auto-tuning fuzzy PID controllers,” International Journal of Fuzzy Systems, vol. 11, no. 1, pp. 49-58.
[9]C. C. Chuang, 2008, “Annealing robust fuzzy neural networks for modeling of molecular auto-regulatory feedback loop systems,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 11-17.

[10]C. W. Tao, J. S. Taur, J. T. Jeng, and W. Y. Wang, 2009, “A novel fuzzy ant colony system for parameter determination of fuzzy controllers," International Journal of Fuzzy Systems, vol. 11, no. 4, pp. 298-307.
[11]Z. Wang and H. F. Guo, 2003, “A new genetic algorithm for nonlinear multi-regressions based on generalized Choquet integrals,” Proceedings of the 12th IEEE International Conference on Fuzzy Systems, St. Louis, pp. 819-821.
[12]Z. Wang, K. S. Leung and G. J. Klir, 2006, “Integration on finite sets,” International Journal of Intelligent Systems, vol. 21, no.10, pp. 1073-1092.
[13]P. Mahasukhon, H. Sharif and Z. Wang, 2006, “Using pseudo gradient search for solving nonlinear multi-regression based on 2-additive measures,” Proceedings of the IEEE International Conference on Information Reuse and Integration, Waikoloa Village, pp. 410-413.
[14]G. BO, C. Wei and Z. Wang, 2009, “Pseudo gradient search for solving nonlinear multi-regression based on the Choquet integral,” Proceedings of GRC’09 IEEE International Conference on Granular Computing, Nanchang, pp. 180-183.
[15]D. M. Hawkins, 1980, Identification of Outliers, Chapman & Hall, London.
[16]F. R. Hampel, 1968, Contributions to the Theory of Robust Estimation, Ph. D Dissertation, University of California, Berkeley.
[17]P. J. Rousseeuw, M. A. Leroy, 1987, Robust Regression and Outlier Detection, Wiley, New York.
[18]P. J. Rousseeuw and K. V. Driessen, 2006, “Computing LTS regression for large data sets,” Data Mining and Knowledge Discovery, vol.1, pp. 29-45.
[19]J. Kennedy and R. C. Eberhart, 1995, “Particle swarm optimization,” Proceedings of IEEE International Conference on Neural Networks, Perth, pp. 1942-1948.
[20]M. Clerc and J. Kennedy, 2002, “The particle swarm: explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, vo.1, pp. 68-73.

[21]C. N. Ko, Y. P. Chang and C. J. Wu, 2007, “An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution,” Applied Mathematics and Computation, vol. 191, pp. 272-279.
[22]A. Chatterjee and P. Siarry, 2006, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, vol. 33, no. 3, pp. 859-871.
[23]Y. P. Chang and C. N. Ko, 2009, “A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters,” Expert Systems with Applications, vol. 36, no. 3, pp. 6809-6816.
[24]Q. Luo and D. Yi, 2008, “A co-evolving framework for robust particle swarm optimization,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 611-622.
[25]J. Sun, B. Feng and W. B. Xu, 2004, “Particle swarm optimization with particles having quantum behavior,” Proceedings of CEC 2004 Congress on Evolutionary Computation, Portland, pp. 325-331.
[26]J. Sun, B. Feng and W. B. Xu, 2004, “A global search strategy of quantum-behaved particle swarm optimization,” Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 111-116.
[27]Y. M. Jau, C. J. Wu and J. T. Jeng, 2010, “A fast parameters estimation for nonlinear multi-regressions based on Choquet integral with quantum-behaved particle swarm optimization,” Artificial Life and Robot, vol.15, pp. 199-202.
[28]Y. M. Jau, K. L. Su, J. T. Jeng, C. N. Ko and S. V. Shiau, 2011, “A modified quantum-behaved particle swarm optimization for large scale global optimization,” ICIC Express Letters, vol. 5, no. 4B, pp. 1301-1305.
[29]P. R. Halmos, 1967, Measure Theory, Van Nostrand, New York.
[30]Z. Wang, 1990, “Absolute continuity and extension of fuzzy measures,” Fuzzy Sets and Systems, vol. 36, pp. 395-399.
[31]Z. Wang and G. J. Klir, 1992, Fuzzy Measure Theory, Plenum Press, New York.
[32]Z. Wang, 1992, “On the null-additivity and the autocontinuity of a fuzzy measure,” Fuzzy Sets and Systems, vol. 45, pp. 223-226.
[33]Z. Wang, G. J. Klir and W. Wang, 1996, “Fuzzy measures defined by fuzzy integral and their absolute continuity,” Journal of Mathematical Analysis and Applications, vol. 203, pp. 150-165.
[34]Z. Wang, G. J. Klir and W. Wang, 1996, “Monotone set functions defined by Choquet integral,” Fuzzy Sets and Systems, vol. 81, pp. 241-250.
[35]G. J. Klir, Z. Wang and D. Harmance, 1997, “Constructing fuzzy measures in expert systems,” Fuzzy Sets and Systems, vol. 92, pp. 251-264.
[36]Q. Jiang, H. Suzuki, Z. Wang, and G. J. Klir, 1998, “Exhaustivity and absolute continuity of fuzzy measures,” Fuzzy Sets and Systems, vol. 96, pp. 231-238.
[37]W. Wang, Z. Wang and G. J. Klir, 1998, “Genetic algorithms for determining fuzzy measures from data,” Journal of Intelligent and Fuzzy Systems, vol. 6, pp. 171-183.
[38]Z. Wang, K. S. Leung and J. Wang, 1999, “A genetic algorithm for determining non-additive set functions in information fusion,” Fuzzy Sets and Systems, vol. 102, pp. 463-469.
[39]Z. Wang and G. J. Klir, 2008, Generalized Measure Theory, Springer, New York.
[40]M. Suego, 1974, Theory of Fuzzy Integrals and Its Application, Doctoral Thesis, Toyoko Institute of Technology.
[41]L. A. Zadeh, 1978, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 1, pp. 3-28.
[42]M. Grabisch, 1996, “K-order additive fuzzy measure,” Proceedings 6th International Conference on Information processing and management of Uncertainty in Knowledge-Based Systems, Granada, Spain, pp. 1345-1350.
[43]M. Grabisch, 1997, “K-order additive discrete fuzzy measure and their representation,” Fuzzy Sets and Systems, vol. 92, pp. 167-189.
[44]M. A. Mohamed and W. Xiao, 2003, “Q-Measures: An efficient extension of the Sugeno λ-measure”, IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 419-426.
[45]T. murofushi and M. Sugeno, 1991, “A theory of fuzzy measure: representations, the Choquet integral, and null sets,” Journal of Mathematical Analysis and Applications, vol. 159, pp. 532-549.
[46]S. Weber, 1984, “Decomposable measures and integrals for archimedean t-conorms,” Journal of Mathematical Analysis and Applications, vol. 101, pp.114-138.
[47]T. Murofushi and M. Sugeno, 1991, “Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral,” Fuzzy Sets and Systems, vol. 42, pp. 57-71.
[48]Z. Wang, W. Wang and G. J. Klir, 1996, “Pan-integrals with respect to imprecise probabilities,” International Journal of General Systems, vol. 25, pp. 229-243.
[49]Z. Wang, K. S. Leung, M. L. Wong and J. Fang, 2000, “A new type of nonlinear integrals and the computational algorithm,” Fuzzy Sets and Systems, vol. 112 , pp. 223-231.
[50]S. Srivastava, M. Singh, V. K. Madasu and M. Hanmandlu, 2008, “Choquet fuzzy integral based modeling of nonlinear system,” Applied Soft Computing, vol. 8, pp. 839–848.
[51]Y. C. Hu, 2008, “Nonadditive grey single-layer perceptron with Choquet integral for pattern classification problems using genetic algorithms,” Neurocomputing, vol. 72, pp. 331–340.
[52]H. Fang, M. Rizzo, H. Wang, K. A. Espy and Z. Wang, 2010, “A new nonlinear classifier with a penalized signed fuzzy measure using effective genetic algorithm,” Pattern Recognition, vol. 43, pp.1393–1401.
[53]Z. Wang, K. S. Leung and J. Wang, 2000, “Determining nonnegative monotone set functions based on Sugeno''s integral: an application of genetic algorithms,” Fuzzy Sets and Systems, vol. 112, pp. 155-164.
[54]Y. C. Hu, 2007, “Sugeno fuzzy integral for finding fuzzy if–then classification rules,” Applied Mathematics and Computation, vol. 185, pp. 72–83.

[55]X. Chen, Z. Jing and G. Xiao, 2007, “Nonlinear fusion for face recognition using fuzzy integral,” Communications in Nonlinear Science and Numerical Simulation, vol. 12, pp. 823–831.
[56]Z. Wanga, W. Li, K. H. Lee and K. S. Leung, 2008, “Lower integrals and upper integrals with respect to nonadditive set functions,” Fuzzy Sets and Systems, vol. 159, pp. 646 – 660.
[57]M. Grabisch, T. Murofushi and M. Sugeno, 2000, Fuzzy Measures and Integrals, Physica-Verlag Heidelberg, New York.
[58]D. Ralescu and G. Adams, 1980, “The fuzzy integral,” Journal of Mathematical Analysis and Applications, vol. 75, pp. 562–570.
[59]Z. Wang, 1984, “The autocontinuity of set function and the fuzzy integral,” Journal of Mathematical Analysis and Applications, vol. 99, pp. 195–218.
[60]C. C. Chuang, S. F. Su and C. C. Hsiao, 2000, “The annealing robust back propagation (ARBP) learning algorithm,” IEEE Transactions on Neural Networks, vol. 11, pp. 1067–1077.
[61]A. Giloni and M. Padberg, 2002, “Least trimmed squares regression, Least median squares regression, and mathematical programming,” Mathematical and Computer Modeling, vol. 35, pp. 1043-1060.
[62]F. Y. Edgeworth, 1887, “On observations relating to several quantities,” Hermathena, vol. 6, pp. 279-285.
[63]P. J. Huber, 1973, “Robust Regression: Asymptotics, conjectures and monte carlo,” Annals of Statistics, vol. 1, pp. 799-821.
[64]C. L. Mallows, 1975, On some topics in robustness, Unpublished memorandum, Bell Telephone Laboratories, Murray Hill, New Jersey.
[65]A. F. Siegel, 1982, “Robust regression using repeated medians,” Biometrika, vol. 69, pp. 242-244.
[66]P. J. Rousseeuw, 1984, “Least median of squares regression,” Journal of the American Statistical Association, vol. 79, pp. 871-880.
[67]P. J. Rousseeuw, 1983, “Multivariate estimation with high breakdown point,” Mathematical Statistics and Applications, vol. B, pp. 283–297.

[68]P. J. Rousseeuw and V. Yohai, 1984, “Robust regression by means of S-estimators,” Robust and Nonlinear Time Series Analysis, edited by J. Franke, W. Hiirdle, and R. D. Martin, Lecture Notes in Statistics, no. 26, Springer Verlag, New York, pp. 256-272.
[69]Z. Wang, K. S. Leung and G. J. Klir, 2005, “Applying fuzzy measures and nonlinear integrals in data mining,” Fuzzy Sets and Systems, vol. 156, pp. 371–380.
[70]Y. Shi and R. C. Eberhart, 1998, “A modified particle swarm optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73.
[71]Y. Shi and R. C. Eberhart, 1999, “Empirical study of particle swarm optimization,” Proceedings of the IEEE International Congress on Evolutionary Computation, pp. 1945–1950.
[72]A. Ratnaweera, S.K. Halgamuge and H. C. Watson, 2004, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 240–255.
[73]A. T. Claude, B. Diu and F. Laloe, 2006, Quantum Mechanics, Wiley Inter Science.
[74]J. Sun, W. Xu and J. Liu, 2005, “Parameter selection of quantum-behaved particle swarm optimization,” Lecture Notes in Computer Science, vol. 3612, pp. 543-552.
[75]A. Reza , M. Alireza and Z. Koorush, 2010, “A novel bee swarm optimization algorithm for numerical function optimization,” Commun Nonlinear Sci Numer Simulat, vol. 15, pp. 3142–3155.
[76]Z. Huang, Y. Wang, C. Yang and C. Wu, 2009, “A new improved quantum-behaved particle swarm optimization model”, Proceedings of the IEEE Conference on Industrial Electronics and Applications, pp. 1560–1564.
[77]S. Srivastava, M. Singh, V.K. Madasu and M. Hanmandlu, 2008, “Choquet fuzzy integral based modeling of nonlinear system,” Applied Soft Computing, vol. 8, pp. 839-848.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top