|
1.Fu, T.-c., A review on time series data mining. Engineering Applications of Artificial Intelligence, 2011. 24: p. 164-181. 2.Hata, T., et al., The seasonal variation of blood pressure in patients with essential hypertension. Clinical and experimental hypertension. Part A, Theory and practice, 1982. 4(3): p. 341-54. 3.Giaconi, S., et al., Seasonal Influences on Blood Pressure in High Normal to Mild Hypertensive Range. Hypertension, 1989. 14: p. 22-27. 4.YY, A.-T., A.-H. JM, and A.-R. EA., Seasonality of hypertension. J Clin Hypertens (Greenwich), 2008. 2: p. 125-129. 5.Brennan, P.J., et al., Seasonal variation in arterial blood pressure. BRITISH MEDICAL JOURNAL, 1982. 285(1982): p. 919-923. 6.Aberg, N., Birth season variation in asthma and allergic rhinitis. Clinical and Experimental Allergy, 1989. 19(6): p. 643-648. 7.Moller, C., et al., Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). Journal of Allergy and Clinical Immunology, 2002. 109(2): p. 251-256. 8.Targonski, P.V., V.W. Persky, and V. Ramekrishnan, Effect of environmental molds on risk of death from asthma during the pollen season. Journal of Allergy and Clinical Immunology, 1995. 95(5): p. 955-961. 9.Low, R., in Acupuncture: Technique for successful point selection2001, Butterworth-Heinemann Oxford. p. 1-14. 10.Wu, Y. and W. Fischer, Practical Therapeutics of Traditional Chinese Medicines1997: Paradigm Publications. 11.Chen, F.-p., et al., Use frequency of traditional Chinese medicine in Taiwan. BMC Health Services Research, 2007. 11: p. 1-11. 12.Lukman, S., Y. He, and S.-C. Hui, Computational methods for Traditional Chinese Medicine: a survey. Computer methods and programs in biomedicine, 2007. 88(3): p. 283-94. 13.吳秀美、徐勝一(1999)。二十四節氣在台灣-「大暑」及「大寒」之探討。跨世紀海峽兩岸地理學術研討會,臺北市,1-20。 14.Cheng, Q., Y.A.N. Zhongwei, and F.U. Congbin, Climatic changes in the Twenty-four Solar Terms during 1960 – 2008. Climatic Changes, 2012. 57(2): p. 276-286. 15.交通部中央氣象局(2011)。臺灣24節氣與氣候---1981~2010資料統計。臺北市:交通部中央氣象局。,1-205 16.Yang, A.C., et al., Do Seasons Have an Influence on the Incidence of Depression ? The Use of an Internet Search Engine Query Data as a Proxy of Human Affect. 2010. 5(10): p. 1-7. 17.Keogh, E. and S. Kasetty, On the Need for Time Series Data Mining Benchmarks : A Survey and Empirical Demonstration, in SIGKDD2002, ACM: Edmonton, Alberta, Canada. p. 23-26. 18.Huang, N.E., et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998. 454(1971): p. 903-995. 19.Huang, N.E. and Z. Wu, A review on Hilbert-Huang transform: method and its application to geophysical studies. Reviews of Geophysics, 2008. 46: p. 1-23. 20.Chang, N.-F., et al., On-line Empirical Mode Decomposition Biomedical Microprocessor for Hilbert Huang Transform. 2012: p. 420-423. 21.Wu, Z. and N.E. Huang, Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 2009. 1(1): p. 1-41. 22.Hsiao, F.-y., et al., Using Taiwan ’ s National Health Insurance Research Databases for Pharmacoepidemiology Research. 2007. 15(2): p. 99-108. 23.Yoo, I., et al., Data Mining in Healthcare and Biomedicine: A Survey of the Literature. Journal of medical systems, 2011. 24.Boari, B., et al., Circadian rhythms and cardiovascular diseases: clinical perspectives. Recenti Prog Med., 2006. 97(12): p. 727-732. 25.Manfredini, R., et al., Chronobiological patterns of onset of acute cerebrovascular diseases. Thromb Res., 1997. 88(6): p. 451-463. 26.Peckova, M., et al., Weelky and seasonal variation in the incidence of cardiac arrests. Am Heart J., 1999. 137(2): p. 512-515. 27.Moineddin, R., et al., Seasonality of primary care utilization for respiratory diseases in Ontario: a time-series analysis. BMC health services research, 2008. 8: p. 160-160. 28.Pudpong, N. and S. Hajat, High temperature effects on out-patient visits and hospital admissions in Chiang Mai, Thailand. Sci Total Environ, 2011. 409(24): p. 5260-7. 29.Cleveland, R.B., et al., STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 1990. 6(1): p. 3-73. 30.Huang, M.-C.W.N.E., Biomedical Data Processing Using HHT: A Review, 2009. 31.Wu, Z., et al., On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci U S A, 2007. 104(38): p. 14889-94. 32.Zhu, S.-M., et al., Analysing the Similarity of Proteins Based on a New Approach to Empirical Mode Decomposition, in iCBBE2010. p. 1-4. 33.燕海霞等(2011)。基于不同白噪聲幅值的總体平均經驗模態分解法分析中醫脈象的研究。生物醫學工程學雜誌,28(1),22-26。 34.Kim, D. and H.-s. Oh, EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum. The R Journal, 2009. 1(1): p. 40-46. 35.BS, J., F. P, and I. DD, Are symptoms of anxiety and depression risk factors for hypertension? Longitudinal evidence from the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Archives of Family Medicine, 1997. 6(1): p. 43-49. 36.Grossman, E. and F.H. Messerli, Hypertension and Diabetes. Clinical, Metabolic and Inflammatory, 2008. 45: p. 82-106. 37.Howarth, E. and M.S. Hoffman, A multidimensional approach to the relationship between mood and weather. British Journal of Psychology, 1984. 75(1): p. 15-23.
|