跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/24 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳富東
研究生(外文):Fu-Dong Chen
論文名稱:探討具反誘電性液晶的新型旋光含醯胺連結基的燕尾型液晶材料
論文名稱(外文):Study on the Novel Antiferroelectric Liquid Crystals Derived from Chiral Swallow-Tailed Materials with Amide Linkage
指導教授:吳勛隆
指導教授(外文):Shune-Long Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:113
中文關鍵詞:反誘電液晶無閥反誘電液晶雙遲滯迴圈V型轉換行為雙成份混合液晶單向型液晶相雙向型液晶相
外文關鍵詞:antiferroelectricthresholdless antiferroelectricdouble hysteresis loopV-shaped switching behaviorbinary mixture liquid crystalsmonotropic mesophaseenantiotropic mesophase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
  本研究的主要目的是嘗試闡明在旋光層列型液晶中結構與性質之的的關係,因為在我們實驗室之前的研究結果中顯示此一類型的旋光物質具有令人興奮的結果,因此設計合成二個系列的旋光物質並討探在此類型旋光液晶結構與性質之間的關係,目標化合物是修飾烷鏈的長度(m)和燕尾長度(n)來研究。
  旋光醯胺液晶是由(S)-2-(6-methoxy-2-naphthyl)propionic acid與N,N’-dialky amines衍生出,液晶材料的中間相與其相轉變溫度由偏光顯微鏡,DSC,光電量測來鑑定,此旋光醯胺物質大部份呈現液晶相:旋光層型A (SmA*),反誘電性液晶相 (SmCA*),而反誘電性液晶相的鑑定是由偏光顯微鏡的光學紋理圖、電流轉換行為、介電常數、光電應答等來確定。
化合物DPmPBNPA(m=9~11)在降溫過程呈現單向型SmA* 和SmCA*液晶相,不同的烷鏈長度呈現SmA*相溫度範圍隨烷鏈長度增加而變小但SmCA*相溫度範圍隨烷鏈長度增加而變大,化合物DPmPBNPA的烷鏈太長(m=12,13)則在升溫或降溫的過程都沒有液晶相,因此,它們不是液晶化合物。
  化合物DEmPBNPA(m=10~15),除了化合物DEmPBNPA (m=12,13)呈現雙向型SmA* 和SmCA*液晶相,其餘的化合物都呈現單向型SmA* 和SmCA*液晶相,而SmCA*液晶相的溫度範圍隨烷鏈長度增加而變小。
  這兩系列旋光醯胺材料在SmCA*液晶相的物理性質由自發極化,介電常數,電流轉換行為,光電應答來鑑定。此類型旋光醯胺物質的自發極化值在80~115 nC cm-2之間。由光電應答鑑定出材料DEmPBNPA(m=12)在SmCA*液晶相呈現無閥的V型轉換行為,其餘兩系列的材料在SmCA*液晶相皆呈現典型的雙遲滯性質,這明顯的表示V型轉換行為和材料的烷鏈長度有關。
  Inui等人在一此反誘電液晶的混合物中發現V型轉換特性。因此,本研究將具有V型轉換光電行為的兩個旋光材料DEmPBNPA(m=12)和EP10PBNP依不同重量百分比混合來探討混合液晶對光電應答的影響以及V型轉換光電特性的影響。這兩個材料間不同的是前者的SmCA*相是單向型,後者的SmCA*相出現在升溫與降溫過程是雙向型。 EP10PBNP呈現BPII-N*-TGBA*-SmA*-SmCA*的液晶相順序,當DEmPBNPA (m=12)的混合比例大於9wt%則BPII相消失,DEmPBNPA (m=12)混合比例大於75wt%時則TGBA*相消失混合物D50/E50的SmCA*相溫度範圍最大。混合液晶在SmCA*相下在厚度5μm的液晶試片中都呈現V型的光電轉換行為。我們的結果證明這兩個無閥反誘電液晶是可互溶的。此外,我們要強調由實驗結果顯示V型轉換行為與材料的自發極化值絕對無關。

Abstract
The purpose of this research work was an attempt to elucidate the structure-property correlation in the chiral amide smectic liquid crystals, because the exciting results have been obtained this field of chiral system in our laboratory. Therefore, two series of chiral materials DPmPBNPA(m=9~13) and DEmPBNPA(m=10~15) were designed for the synthesis and investigation of the stricture-property relationship in the chiral amide liquid crystal system. The target compounds was modified independently by the length of the alkyl chain length (m) and swallow-tailed length (n) for the study.
Chiral amide liquid crystals were derived by using chiral (S)-2-(6-methoxy-2-naphthyl)propionic acid with N,N’-dialky amines. Mesophases and their corresponding transition temperatures of the materials were identified by the polarizing microscopic textures, DSC carlorimetry and electro-optical measurements. The results showed that most of the chiral amide materials exhibited phase : chiral smectic A (SmA*), antiferroelectric (SmCA*) phases. SmCA* phase was further characterized by the schlieren textures, switching behaviors, dielectric constants and eletro-optical response.
Compounds DPmPBNPA(m=9~11) exhibited monotropic mesophases of the SmA* and SmCA* phases in cooling process. The variation of alkyl chain length (m) showed that the temperature range of SmA* phase became smaller, but the temperature range of SmCA* phase became larger as the number of alkyl chain length increased. Compounds DPmPBNPA with higher alkyl chain length m=12,13 had no mesophase observed either in heating or cooling process, therefore, they are not mesomorphic compounds.
Compounds DEmPBNPA(m=10~15), with the exception of compounds DEmPBNPA(m=12,13) exhibited enantiotropic SmA* and SmCA* phases, while the rest of compounds displayed monotropic SmA* and SmCA* phases. The temperature range of the SmCA* phase decreased as the alkyl chain of compounds DEmPBNPA increased.
Physical properties of these two series of chiral amide materials in SmCA* phase were characterized by spontaneous polarization, dielectric constant, switching current and electro-optical responses. The maximum magnitudes of spontaneous polarization (Ps values) for the chiral amide materials were obtained in the range of 80~115 nC cm-2. The electro-optical response demonstrated that material DEmPBNPA (m=12) displayed thresholdless V-shaped switching in antiferroelectric(SmCA*) phase while other compounds of these two series of materials displayed typical characteristic of double hysteresis in antiferroelectric(SmCA*) phase. It is strongly demonstrated that V-shaped switching properties for these materials are critically dependent on the alkyl chain length; the effect of nonchiral alkyl chain length.
The analogous V-shaped switching was reported by Inui et al. in some antiferroelectric liquid crystal mixtures. Thus, binary mixtures of two chiral materials; compound DEmPBNPA(m=12) and chiral swallow-tailed ester material EP10PBNP possessing V-shaped switching property were studied in order to investigate the miscibility of these two compounds, more particularly, the effect of mixtures on the electro-optical responses; the thresholdless, V-shaped switching properties. The different between two materials DEmPBNPA(m=12) and EP10PBNP is that the former appeared monotropic SmCA* phase and the later has enantiotropic SmCA* phase in heating and cooling processes. EP10PBNP displayed a phase sequence of BPII-N*-TGBA*-SmA*-SmCA*, but as the component ratio of DEmPBNPA(m=12) greater than 9wt%, the BPII phase was disappeared and as the component ratio of DEmPBNPA(m=12) greater than 75wt%, the TGBA* phase was disappeared. The temperature range of SmCA* phase in component ratio D50/E50 was the largest. The eletro-optical responses in the SmCA* phase of the binary mixtures exhibited V-shaped switching in the cell with 5μm thickness. Ours results demonstrate two materials with V-shaped switching responses are mixable. In particular, we like to emphasize that the magnitudes of spontaneous polarization have no any effect on the appearance of thresholdless, V-shaped switching property.

TABLE OF CONTENTS
ACKNOWLEDGMENTS…………………………….………………………………Ⅲ
ABSTRACT………………………………………………………………………Ⅳ
中文摘要………………………………………..……………………………Ⅶ
TABLE OF CONTENTS………………………………………………………….Ⅸ
LIST OF SCHEME………………………………………………………….. XI
LIST OF TABLES……………………………………………………………XII
LIST OF FIGURES…………………………………………………………. XII
CHAPTER 1 INTRODUCTION
1.1 Overview….…………………..….………………………………….1
1.2 Ferroelectric (SmC*) Phases…………...…………….………..1
1.3 Antiferroelectric (SmCA*) Phases……………………………….5
1.3.1 Antiferroelectric Liquid Crystal Materials……………….5
1.3.2 Antiferroelectric Structure…………………………………..8
1.3.3 Thresholdless Antiferroelectricity and V-Shaped Switching......................................................8
1.4 Twist Grain Boundary (TGB) Phases…………………………….14
1.5 Chiral Nematic (N*) Phases………………………………………14
1.6 Blue Phases………………………………………………………….17
1.7 Motivation of Study……………………………………………….21
CHAPTER 2 EXPERIMENTAL
2.1 Preparation of Materials………………………………………..25
2.1.1 Synthesis of 4-(4’-alkoxyphenyl)benzoic acids, mPBA
(m=9~15)………………………………………………………………………27
2.1.2 Synthesis of N,N’-diethyl (S)-2-(6-methoxy-2-naphthyl)propionate,
DEMNPA…………………………………………………………………..27
2.1.3 Synthesis of N,N’-diethyl (S)-2-(6-hydroxy-2-naphthyl)propionate,
DEHNPA……………………………………………………………………28
2.1.4 Synthesis of N,N’-diethyl (S)-2-{6-[4-(4’-alkloxyphenyl) benzoyloxy]-2-naphthyl}propanamide, DEmPBNPA (m=10~15)………..…………………...............................29
2.1.5 Synthesis of N,N’-dipropyl (S)-2-(6-methoxy-2-naphthyl) propionate,
DPMNPA……………………………………………….………………….29
2.1.6 Synthesis of N,N’-dipropyl (S)-2-(6-hydroxy-2-naphthyl)propionate,
DPHNPA…………………………………………………………………..30
2.1.7 Synthesis of N,N’-dipropyl (S)-2-{6-[4-(4’-alkloxyphenyl) benzoyloxy]-2-
naphthyl}propanamide, DPmPBNPA (m=9~13)……………………….31
2.1.8 Preparation of binary mixtures………………………………31
2.2 Characterization of materials………………………………….32
2.2.1 Mesophase identification………………………………………32
2.2.2 Preparation of homogenous cells…………………………….32
2.2.3 Alignment of liquid crystals in surface stable ferroelectric liquid
crystals (SSFLC) cells………………………………………………32
2.2.4 Spontaneous polarization measurement……….…………….33
2.2.5 Dielectric constant measurement…………………………….35
2.2.6 Optical response measurement…………………………………36
CHAPTER 3 RESULTS AND DISCUSSION
3.1 Chemical structure identification…………………………….37
3.2 Characterization of materials (DPmPBNPA,m=9~13)………….44
3.2.1 Optical microscopy studies……………………………………44
3.2.2 Differential scanning calorimetry (DSC)………………….51
3.2.3 Spontaneous polarization (PS)……………………………….54
3.2.4 Dielectric properties………………………………………….56
3.2.5 Switching behavior………………………………………………59
3.2.6 Electro-optical responses…………………………………….59
3.3 Characterization of materials (DEmPBNPA, m=10~15)……….62
3.3.1 Optical microscopy studies……………………………………62
3.3.2 Differential scanning calorimetry (DSC)………………….62
3.3.3 Spontaneous polarization (PS)……………………………….68
3.3.4 Dielectric properties………………………………………….70
3.3.5 Switching behavior………………………………………………73
3.3.6 Electro-optical responses…………………………………….75
3.4 Study in the binary mixtures of chiral amide and esters possessing
antiferroelectricity with V-shaped switching property……86
3.4.1 Mesomorphic properties………………………….……………87
3.4.2 Differential scanning calorimetry (DSC)…………………91
3.4.3 Spontaneous polarization (PS)………………………………94
3.4.4 Dielectric properties…………………………………………94
3.4.5 Switching behavior…………………………………………….97
3.4.6 Electro-optical responses……………………………………97
CHAPTER 4
CONCLUSIONS……………………………………………………………...107
REFERENCE……………………………………………………………….…109
LIST OF SCHEME
SCHEME 2.1Mechanistic synthetic procedures for chiral compounds DEmPBNPA and DEmPBNPA………………………………………………………….………….26
LISTOF TABLES
Table 3.1.1 Chemical shifts of 1H-NMR of compound DEMNPA………38
Table 3.1.2 Chemical shifts of 1H-NMR of compound DEHNPA………39
Table 3.1.3 Chemical shifts of 1H-NMR of compound DEmPBNPA(m=10)........................................................40
Table 3.1.4 Chemical shifts of 1H-NMR of compounds DEmPBNPA(m=10~15)…...................................................42
Table 3.1.5 Results of elemental analysis for compounds DEmPBNPA(m=10~15).....................................................42
Table 3.1.6 Chemical shifts of 1H-NMR of compounds DPmPBNPA(m=10~15)….43
Table 3.1.7 Results of elemental analysis for compounds DPmPBNPA(m=10~15)…43
Table 3.2.1 The transition temperatures T(℃) and enthalpy ΔH(J/g, in italic) of the transition for materials DPmPBNPA(m=9~13) measured by DSC at 2℃ min-1 scanning rate on cooling stage………………………………………………………52
Table 3.3.1 The transition temperatures T(℃) and enthalpy ΔH(J/g, in italic) of the transition for materials DEmPBNPA(m=10~15) measured by DSC at 2℃ min-1 scanning rate on cooling stage………………………………………………………66
Table 3.4.1 The transition temperatures T(℃) and enthalpy ΔH(J/g, in italic) of the transition for binary mixtures measured by DSC at 2℃ min-1 scanning rate on cooling stage…………………………………………………………………………………92
Table 3.4.2 The results of driving voltage range for binary mixtures ratio……….106
LIST OF FIGURES
Figure 1.1 Helical structure and molecular arrangement in the SmC* phase…………3
Figure 1.2 Schematic representation of a "surface stabilized FLC" (SSFLC) cell where the helix is unwound due to the strong interaction in thin cell. The director of a molecule can be on either side of a cone with an opening angle of 2 and alternate each other by applying electrical field and vice versa. ……………………………..…4
Figure 1.3 Helicoidal structures of the antiferroelectric (SmCA*) phase, and a local molecular arrangement in SmCA* phase………………………………………………9
Figure 1.4 Transmittance change and switching current observed by applying a triangular voltage wave in MHPOBC. Note that two changes in the transmittance and two peaks in the switching current are observed……………………………………10
Figure 1.5 Apparent tilt angle under the application of a dc electric field in MHPOBC Note the threshold and double hysteresis behaviors………………………………….10
Figure 1.6 (a) A three-component mixture of compound I, II and III with the mixing ratio of I:II:III=40:40:20, (b) the observed V-shaped switching (Upper) and the simulated light transmittance as a function of the normalized electrical field and (c) the simplified model of the phase with thresholdless antiferroelectricity……………11
Figure 1.7 Schematic illustration of the molecular orientational structures and the simulated light transmittance as function of electrical field in the three stable
states…………………………………………………………………………………13
Figure 1.8 Helical structure of the TGBA phase…………………………………….15
Figure 1.9 Helical structure of the chiral nematic phase (N*)……………………16
Figure1.10 Schematic representation of phases for non-chiral and chiral liquid crystal molecules. (a) Non-chiral molecules have only nematic (N) and isotropic (Iso) phases. (b) Chiral molecules exhibit a chiral nematic (N*) phase up to three blue phases and the isotropic phase………………………………………………………………….18
Figure 1.11 Two views of a double twist cylinder. A cross sectional view (a) shows that in the center the director is parallel to the cylinder axis. The director twists in going away from the center in any direction. As shown in (b), the director has twisted by 45o between the center and outside of the cylinder……………………………….19
Figure 1.12 Models for BPI and BPII. Arrangement of double twist tubes (left) and disclination lines (right) for the unit cell of BPI (a) and unit cell of BPII (b)………20
Figure 1.13 Transmittance versus electrical field obtained from compounds (S)HNP(10,n,2; n=0,1) in the SmCA* phase on applying triangular wave………….23
Figure 2.1 Block diagram for the measure circuit……………………………………34
Figure 2.2 Schematic illustration for the current induced by applying a field with a triangular form.……………………………………………………………………….34
Figure 2.3 Optical setup for the transmittance measurement………………………...36
Figure 3.1.1 The 1H-NMR spectrum of compound DEMNPA………………………38
Figure 3.1.2 The 1H-NMR spectrum of compound DEHNPA……………………….39
Figure 3.1.3 The 1H-NMR spectrum of compound DEmPBNPA(m=10)………….40
Figure 3.2.1 The pseudo-homeotropic and birefringence ring texture of the SmA* phase obtained from compound DEmPBNPA(m=11)………………………………45
Figure 3.2.2 The focal-conic texture of the SmA* phase obtained from compound DPmPBNPA(m=11)………………………………………………………………….45
Figure 3.2.3 The striated focal-conic texture of the SmCA* phase obtained from compound DPmPBNPA(m=11)……………………………………………………..46
Figure 3.2.4 The schlieren texture of the SmCA* phase showing both two and four brushes obtained from compound DPmPBNPA(m=11)……………………………..46
Figure 3.2.5 Model structure of the two-brush defect; i.e., dispirations, a combined defect of a wedge disclination and a screw dislocation……………………………..47
Figure 3.2.6 The microscopic texture of the SmA* phase of DPmPBNPA(m=11) taken with the material confined in a polyimide coated cell with spacing 5μm under crossed polarizing microscope………………………………………………………49
Figure 3.2.7 The microscopic striped pattern of the homogeneous texture of the antiferroelectric phase of DPmPBNPA(m=11) taken with the material confined in a polyimide coated cell with spacing 5μm under crossed polarizing microscope. (a) 0V, (b) +2V, (c) —2V…………………………………………………………….……49
Figure 3.2.8 DSC thermogram for compound DPmPBNPA(m=11) in heating and cooling runs at a scanning rate of 2℃ min-1………………………………………..52
Figure 3.2.9 A plot of transition temperature as a function of terminal aliphatic chain length m for compounds DPmPBNPA(m=9~13) on cooling process…… …………53
Figure 3.2.10 Magnitudes of the spontaneous polarization plotted as a function of temperature for DPmPBNPA(m=9~11). Then Tc is the temperature of SmA*-SmCA* transition……………………………………………………………………………55
Figure 3.2.11 Temperature dependence of the dielectric constant ε’for DPmPBNPA with m=11 at 10kHz in the cell with 25μm thickness under 0.2℃ min-1 cooling process…………………………………………………………….…………57
Figure 3.2.12 Some representative dispersion and absorption curves of compound DPmPBNPA(m=11), plotted as ε’(●) andε”(○) versus frequency in the SmA* phase (a) at 92℃, and SmCA* phase at (b) 82℃ and (c) 70℃……………………58
Figure 3.2.13 The switching current behavior of DPmPBNPA(m=11) obtained at 5Hz and several temperatures on applying triangular in 5μm thickness of homogeneous aligned cell………………………………………………………………..………….60
Figure 3.2.14 Transmittance versus electrical field obtained at 10Hz and several temperatures on applying triangular wave of compound DPmPBNPA(m=11)……....61
Figure 3.3.1 DSC thermogram for compound DEmPBNPA(m=11) in heating and cooling runs at a scanning rate of 2℃ min-1…………………………………………64
Figure 3.3.2 DSC thermogram for compounds DEmPBNPA with m=12 (a) and 13 (b) in heating and cooling runs at a scanning rate of 2℃ min-1…………………………65
Figure 3.3.3 A plot of transition temperature as a function of terminal aliphatic chain length m for compounds DEmPBNPA(m=10~15) in cooling process………………67
Figure 3.3.4 Magnitudes of the spontaneous polarization plotted as a function of temperature for DEmPBNPA(m=10~15). The Tc is the temperature of SmA*-SmCA* transition……………………………………………………………………………69
Figure 3.3.5 Temperature dependence of the dielectric constant ε’for DEmPBNPA with m=10 (a) and 13 (b) at 10kHz in the cell with 25μm thickness under 0.2℃min-1 cooling process………………………………………………………………………71
Figure 3.3.13 Some representative dispersion and absorption curves of compound DEmPBNPA(m=10), plotted as ε’(●) andε”(○) versus frequency in the SmA* phase (a) at 98℃, and SmCA* phase at (b) 75℃ and (c) 70℃…………………….72
Figure 3.3.7 The switching current behavior of DEmPBNPA(m=12) obtained at 5Hz and several temperatures on applying triangular in 5μm thickness of homogeneous aligned cell…………………………………………………………………………...74
Figure 3.3.8 Transmittance versus electrical field obtained at several temperatures and frequency on applying triangular wave of compound DEmPBNPA(m=10)…….76
Figure 3.3.9 Electric and optical responses under triangular waves of various temperatures in the antiferroelectric (AF) phase…………..…………………………78
Figure 3.3.10 D-E hysteresis curves replotted form figure 3. 3.9, showing double hysteresis loops characteristic of antiferroelectricity………………………………79
Figure 3.3.11 Transmittance versus electrical field obtained at 20Hz and several temperatures on applying triangular wave of compound DEmPBNPA(m=12)……..81
Figure 3.3.12 Transmittance versus electrical field obtained at several temperatures and frequency on applying triangular wave of compound DEmPBNPA(m=12)…….82
Figure 3.3.13 Transmittance versus electrical field obtained at 20Hz and several temperatures on applying triangular wave of compound DEmPBNPA(m=13)……84
Figure 3.4.1 (a) The schlieren texture of N* phase, (b) the Grandjean-like texture of TGBA* phase and (c) the birefringence texture of SmA* phase……………………88
Figure 3.4.2 Textures of mixture D25/E75 observed from the polarizing microscope on cooling process (a) the red petal texture of SmCA* phase, (b) the green petal texture of SmCA* phase, (c) the green-blue petal texture of SmCA* phase…………………….89
Figure 3.4.3 DSC thermogram for the mixture D25/E75. The heating and cooling rates were 2℃ min-1………………………………………………………………………92
Figure 3.4.4 A plot of transition temperature as binary mixtures of component ratio of DEmPBNPA(m=12) and EP10PBNP on cooling process……………………………93
Figure 3.4.5 Magnitudes of the spontaneous polarization plotted as a function of temperature for the binary mixtures of DEmPBNPA(m=12) and EP10PBNP………95
Figure 3.4.6 Dielectric constant (obtained at frequency 10kHz) versus temperature for binary mixtures of DEmPBNPA(m=12) and EP10PBNP. The curve parameters are obtained from (a)D25/E75, (b) D50/E50 and (c) D75/E25………………………..96
Figure 3.4.7 Switching behavior of mixture D50/E50 obtained at 5Hz and several temperatures on applying triangular in 5μm thickness of homogeneous aligned cell………………………………………………………………………………….98
Figure 3.4.8 The electro-optical responses of transmittance versus electrical field measured on applying triangular waveform in the SmCA* phase of the mixture D75/E25 in the cell with 5μm thickness at several temperatures…………………...99
Figure 3.4.9 The electro-optical responses of transmittance versus electrical field measured on applying triangular waveform in the SmCA* phase of the mixture D50/E50 in the cell with 5μm thickness at several temperatures…………………101
Figure 3.4.10 The electro-optical responses of transmittance versus electrical field measured on applying triangular waveform in the SmCA* phase of the mixture D25/E75 in the cell with 5μm thickness at several temperatures…………………102
Figure 3.4.11 (a) The anti-FLC hysteresis loop obtained by orienting the device between crossed polarizers so that the relaxed state appears dark. Switching in either direction then causes symmetric transmission state. (b) The addressing signal used in anti-FLC systems. Alternate cycles have opposite polarity addressing and holding fields………………………………………………………………………………104
Figure 3.4.12 Transmittance versus electrical field obtained from different ratio of binary mixtures of DEmPBNPA(m=12) and EP10PBNP…………………………106

EFERENCE
[1]MEYER, R. B., LIEBERT, L., STRZELECKI, L. and KELLER, P., 1975, J. PHYS. (Pairs) Lett., 36, L69.
[2]CHANDANI, A. D. L., OUCHI, Y., TAKEZOE, H., FUKUDA, A., TERASHIMA, K., FURUKAWA, K. and KISHI, A., 1989, Jpn. J. Appl. Phys., 28, L1261.
[3]GORECKA, E., CHANANI, A. D. L., OUCHI, Y., TAKEZOE, H. and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, 131.
[4]GOODBY, J. W., WAUGH, M. A., STEIN, S. M., CHIN, E., PINDAK, R. and PATEL, J. S., 1989, J. Am. Chem. Soc., 111, 8119.
[5]YU, L. J., LEE, H., BAK, C. S. and LABES, M. M., 1976, Phys. Rev. Lett., 36, 388.
[6]CLARK N. A. and LAGERWALL, S.T., 1980, Appl. Phys. Lett., 36, 899.
[7]YAMAWAKI, M., YAMADA, Y., YAMAMOTO, N., MORI, K., HAYASHI, H., SUZUKI, Y., NEGI, Y. S., HAGIWARA, T., KAWAMURA, I., ORIHARA, H. and ISHIBAHSI, Y., 1989, Jpn. Display '89, 26.
[8]JOHNO, J., CHANDANI, A. D. L., LEE, J., OUCHI, Y., TAKEZOE, H., FUKUDA, A., IOTH, K. and KITAZUME, T., 1989, Proc. Jpn. Display, 22.
[9]INUI, S., IIMURA, N., SUZUKI, T., IWANE, H., MIYACHI, K., TAKANISHI, Y. and FUKUDA, A., 1996, J. Mater. Chem., 6, 671.
[10]MEYER, R.B., LIEBERT, L., STRZELECKI, L. and KELLER, P., 1975, J. Phys. (Pairs) Lett., 36, L69.
[11]HELFRICH, W. and OH, C. S., 1971, Mol. Cryst. Liq. Cryst., 14, 289.
[12]KITZEROW, H. S. and BAHR C., 2001, Chirality in Liquid Crystals, (Springer), p.251.
[13]DEMUS, D., GOODBY, J. W., GRAY, G. W., SPIESS, H. W. and VILL, V., 1998, Handbook of Liquid Crystals, 2(B), p.685.
[14]CHANDANI, A. D. L., HAGIWARA, T., SUZUKI, Y., OUCHI, Y., TAKEZOE, H. AND FUKUDA, A., 1988, Jpn. J. Appl. Phys., 27, L729.
[15]YAMAMOTO, N., YAMADA, Y., KOSHOBU, N., MORI, K. NAKAMURA, K., ORIHARA, H., ISHIBASHI, Y., SUZUKI, Y. and KAWAMURA, I., 1992, Jpn. J. Appl. Phys., 31, 3182.
[16]FUKUDA, A., 1995, Proc. Asia Display’95 (Hamamatsu), 61.
[17]SAISHU, T., TAKATOH, K., IIDA, R., NAGATA, H. and MORI, Y., 1996, SID’96 (San Diego) digest, 28.4
[18]REN, S. R. and LUBENSKY, T. C., 1988, Phys. Rev. A, 38,2132.
[19]DE GENNES, P. G., 1972, Solid State Commun., 10, 753.
[20]CHIN, K. J., ZASADZINSKI, A. N., PINDAK, R., SLANEY, A. J. and GOODBY, J. W., 1992, Science, 258,275.
[21]DEMUS, D., GOODBY, J. W., GRAY, G. W., SPIESS, H. W. and VILL, V., 1998, Handbook of Liquid Crystals, 2(A), 47.
[22]COATED, D., and GRAY, G. W., 1973, Phys. Lett., 45A, 115.
[23]STEGEMEYER, H., and BERGMANN, K., 1980, Liquid crystals of One — and Two-Dimensional Order, edited by HELFRICH, W., and HEPPKE, G.,(brlin: Springer), p.161.
[24]STEGEMEYER, H., BLUMEL, T. H., HILTROP, K., ONUSSEIT, H., and PORSCH, F., 1986, Liq. Cryst., 1, 3.
[25]CROOITER, P. P., 1989, Liq. Cryst., 5, 751.
[26]PETER, P. C., and HEINZ, S. K., 1992, Condensed Mater News., 1, 6.
[27]MOCHIZUKI, A., MOTOYOSHI, K., and NAKATSUKA, M., 1991, Ferroelectrics, 122, 37.
[28]WEDLER, W., DEMUS, D., ZASCHKE, H., MOHR, K., SCHAFER, W., and WEISSFLOG, W., 1991, J. Mater. Chem., 1(3), 347.
[29]HIRD, M., TOYNE, K. J., GRAY, G. W., DAY, S. E., McDOONNEL, D. G., 1993, Liq. Cryst., 15, 123.
[30]GOODBY, J. W., SLANEY, A. J., BOOTH, C. J., NISHIYAMA, I., VUIJK, J. D., STYRING, P. and TOYNE, K.J., 1994, Mol.Cryst. Liq. Cryst., 243, 231.
[31]VORA, R. A. and GUPTA, R., 1981, Mol. Cryst. Liq. Cryst. 67, 251.
[32]KALYVAS, V., and MCINTYRE, J. E., 1982, Mol. Cryst. Liq. Cryst., 80, 105.
[33]VORA, R. A., and PRAJAPATI, A. K., 1999, Mol. Cryst. Liq. Cryst., 332, 329.
[34]Kusumoto, T., Ueda, T., Hiyama, T., Takehara, S., Shoji, T., Osawa, M., Kuriyama, T., Nakamura, K. and Fujisawa, T., Chem. Lett. 1990, 523.
[35]UCAR, H., DERPOORTEN, K. V., DEPOVERE, P., LESIEUR, D., ISA, M., MASEREEL, B., DELARGE, J. and POUPAERT, J. H., 1998, Tetrahedron, 54, 1763.
[36]TAUB, D., GIROTRA, N. N., HOFFSOMMER, R. D. KUO, C. H., SLATES, H. L., WEBER, S. and WENDLER, N. L., 1968, Tetrahedron, 24, 2443.
[37]MIYASATO, K., ABE, S., TAKEZOE, H., FUKUDA, A. and KUZE, T., 1983, Jpn. J. Appl. Phys., 22, L661.
[38]WROBRL, S., HAASE, W., PFEIFFER, M., BERESENEV, L. and GEELHAAR, T., 1992, Mol. Cryst. Liq. Cryst., 212, 335.
[39]LEE, J., CHANDANI, A. D. L., ITOH, K., OUCHI, Y., TAKEZOE, H. and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, 1122.
[40]TAKANISHI, Y., TAKEZOE, H., FUKUDA, A., KOMURA, H. and WATANABE, J., 1992, J. Mater. Chem., 2, 71.
[41]TAKANISHI, Y., TAKEZOE, H., FUKUDA, A. and WATANABE, J., 1992, J., Phys. Rev. B45, 7684.
[42]NAKAGAWA, K., SHINOMIYA, T., KODEN, M., TSUBOTA, K., KUROTATE, T. ISHII, Y., FUNADA, F., MATSUURA, M., AWANE, K., 1988, Ferroelectrics, 85, 39.
[43]HANYU, Y., NAKAMURA, K., HOTTA, Y., YOSHIHARA, S., KAMBE, J., 1993, SID Digest’93, 364.
[44]NAKAGAWA, K., SHINOMIYA, T., KODEN, M., TSUBOTA, K. KUROTATE, T., ISHII, Y., FUNADA, F., MATSUURA, M. and AWANE, K., 1988, Ferroelectrics, 85, 39.
[45]HANYU, Y., NAKAMURA, K., HOTTA, Y., YOSHIHARA, S., KAMBE, J., 1993, SID Digest’93, 364.
[46]BECCHERELLI, R. and ELSTON, S. L., 2000, Displays, 21, 155.
[47]SLANEY, A. J., WATSON, M. and GOODBY, J. W., 1995, J. Mater. Chem., 5, 2145.
[48]CHEN, Y. and WU, W. J., 1998, Liq. Cryst., 25 309.
[49]SUZUKI, Y., NONAKA, O., KOIDE, N., HAGIWARA, T., KAWAMURA, I., YAMAMOTO, N., YAMADA, Y. and KITAZUME, T., 1993, Ferroelectrics, 147, 109.
[50]TAKANISHI, Y., HIRAOKA, K., AGRAWAL, V. K., TAKEZOE, H., FUKUDA, A. and MATSUSHITA, M., 1991, Jpn. J. Appl. Phys., 30, 2023.
[51]GISSE, P., PAVEL, J., NGUYEN, H. T. and LORMAN, V. L., 1993, Ferroelectrics, 147, 27.
[52]SUZUKI, Y. I., ISOZAKI, T., HASHIMOTO, S., KUSUMOTO, T., HIYAMA, T., TAKANISHI, T., TAKEZOE, H. and FUKUDA, A., 1996, J. Mater. Chem., 6, 753.
[53]FUKUDA, A., TAKANISHI, Y., ISOZAKI, T., ISHIKAWA, K. and TAKEZOE, H., 1994, J. Mater. Chem., 4, 997.
[54]SEOMUM, S., GOUDA, T., TAKANISHI, T., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1999, Liq. Cryst., 26, 151.
[55]LEE, J., CHANDANI, A. D. L., ITOH, K., OUCHI, Y., TAKEZOE, H. and FUKUDA, A., 1990, Jpn. J. Appl. Phys., 29, 1122.
[56]SUZUKI, Y. I., ISOZAKI, T. HASHIMOTO, S., KUSUMOTO, T., HIYAMA, T., TAKANISHI, Y., TAKEZOE, H. and FUKUDA, A., 1996, J. Mater. Chem., 6, 753.
[57]ORIHARA, H. FUJIKAWA, T., ISHIBASHI, Y., YAMADA, Y., YAMAMOTO, N., MORI, K., NAKAMURA, K., SUZUKI, Y., HAGIWARA, T. and KAWAMURA, I., 1990, Jpn. J. Appl. Phys., 29, L333.
[58]HSIEH, W. J., 1998, thesis entited “Design, Synthesis and Electro-optical properties of Chiral Liquid Crystals Derived from (S)-2-(6-Hydroxy-2-naphthyl)propionic Acid”.
[59]SEBASTIAN, G., KRZYSZTO, C., ROMAN, D., WOJCIECH, K. and DAMIAN, P., 2001, Mol. Cryst. Liq. Cryst., 365, 189.
[60]CHANDANI, A. D. L., SEOMUM, C. Y., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1998, Liq. Cryst., 26, 167.
[61]SEOMUM, S. S., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1997, Jpn. J. Appl. Phys., 36, 3586.
[62]FUKUDA, A., SEOMUM, S. S., TAKAHASHI, T., TAKANISHI, Y. and ISHIKAWA, K., 1997, Mol. Cryst. Liq. Cryst., 303, 379.
[63]SEOMUM, S. S., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H., FUKUDA, A., TANAKA, C., FUJIYAMA, T., MARUYAMA, T. and NISHIYAMA, S., 1997, Mol. Cryst. Liq. Cryst., 303, 181.
[64]PARK, B., SEOMUM, S. S., NAKATA, M., TAKAHASHI, M., TAKANISHI, Y., ISHIKAWA, K. and TAKEZOE, H., 1999, Jpn. J. Appl. Phys., 38, 1474.
[65]SEOMUM, S. S., PARK, B., CHANDANI, A. D. L., HERMANN, D. S., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1998, Jpn. J. Appl. Phys., 37, L691.
[66]PARK, B., NAKATA, M., SEOMUM, S. S., TAKANISHI, Y., ISHIKAWA, K. and TAKEZOE, H., 1999, Phys. Rev., E59, R3815.
[67]WU, S. L. and HSIEH, W. J., 1999, Chem. Mater., 11, 852.
[68]DIERKING, I. and LAGERWALL, S. T., 1999, Liq. Cryst., 26, 91.
[69]GRAY, G. W. and MCDONNEL, D. G., 1976, Mol. Cryst. Liq. Cryst., 37, 189.
[70]NISHIYAMA, I., CHIN, E. and GOODBY, J. W., 1993, J. Mater. Chem., 3, 161.
[71]HILLER, S., PIKIN, S. A., HASSE, W., GOODBY, J. W. and NISHIYAMA, I., 1994, Jpn. J. Appl. Phys., 33, L1170.
[72]GORECKA, E, POCIECHA, D., GLORAVA, M. and MIECZKOWSKI, J., 1998, Phys. Rev., 81, 2946.
[73]SEOMUM, S., GOUDA, T., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1999, Liq. Cryst., 26, 151.
[74]CHANDANI, L., CUI, Y., SEOMUM, S., TAKANISHI, Y., ISHIKAWA, K., TAKEZOE, H. and FUKUDA, A., 1998, Liq. Cryst., 26, 167.
[75]REYNAERTS, C., CAMPENHOUT, J. and CUYPERS, F., 1991, Ferroelectrics, 113, 419.
[76]DIJON, J. In: Liquid Crystals, application and uses, 1991, Vol.1 (ed B. Bahadur) World scientific, USA, 305.
[77]KIMURA, M., MAEDA, H., GOMES, C. M., YOSHIDA, M., ZHANG, B. Y. SEKINE, H. and KOBAYASHI, S., 1990, Proc. SID, 31, 139.
[78]YAMADA, Y., YAMAMOTO, N., MORI, K., KOSHOUBU, N., NAKAMURA, K., KAWAMURA, I. and SUZUKI, Y., 1993, SID, 1, 289.
[79]TERADA, M., YAMADA, S., KATAGIRI, K., YOSHIHARA, S. and KANBE, J., 1993, Ferroelectrics, 149, 283.
[80]FUNFSCHILLING, J. and SCHADT, M., 1989, J. Appl. Phys., 66, 3877.
[81]TANAKA, T., SAKAMOTO, K., TADA, K. and OGURA, J., 1994, SID’94 Digest, 430.
[82]YAMAMOTO, N., KOSHOUBU, N., NAKAMURA, K. and YAMADA, Y., 1993, Ferroelectrics, 149, 295.
[83]TAJIMA, E., KONDOH, S. and SUZUKI, Y., 1993, Ferroelectrics, 149, 255.
[84]CLARK, N. A., MACLENNAN, J. E., SHAO, R., COLEMAN, D. A., BARDON,S., BELLINI, T., LINK, D. R., NATALE, G., GLASER, M. A., WALBA, D. M., WAND, M. D., CHEN, X. H., RUDQUIST, P., LAGERWALL, J. P. F., BUIVYDAS, M., GOUDA, F., and LAGERWALL, S. T., 1999, J. Mater. Chem., 9, 1257; RUDOQUIST, P., SHAO, R. F., COLEMAN, D., BARDON, S., LINK, D. R., BELLINI, T., MACLENNAN, J. E., CHEN, X. H., WALBA, D. M., LAGERWALL, J. P. F., BUIVYDAS, M., GOUDA, F., LAGERWALL, S. T. and CLARK, N. A., 1999, SID Digest, p.409.
[85]CLARK, N. A., COLEMAN, D. and MACLENNAN, J. E., 2000, Liq. Cryst., 27, 985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文