|
1.Cosgrove D. J. (1966) The chemistry and biochemistry of inositol polyphosphates. Rev. Pure. Appl. Chem., 16, 209–215. 2.Reddy N. R., Sathe S. K., Salukhe D. K. (1982) Phytates in legumes and cereals. Adv. Food Res., 28, 1–92. 3.Schroder B., Breves G., Rodehutscord M. (1996) Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch Tieraerztl Wochenschr, 103, 209–214. 4.Sweeten J.M. (1992) Livestock and poultry waste management: a national overview. In: Blake J. D., Magette W. (eds) National livestock, poultry and aquaculture waste management. Amer. Soc. Agric. Eng., 4–15. 5.O’Dell B. L., Savage J. E. (1960) Effects of phytic acid on zinc bioavailability. Proc. Soc. Exp. Biol. Med., 103, 304–305. 6.Oberleas D. (1973) Phytates in: Toxicants occurring naturally in foods. National Academy of Sciences, 363. 7.Lei, X. G., Ku P. K., Miller E. R., Ullrey D. E., Yokoyama MT (1993) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr., 123, 1117–1123. 8.B.-C. Oh, W.-C. Choi, S. Park, Y.-O. Kim, T.-K. Oh (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol Biotechnol, 63, 362–372. 9.Urbano G., Lopez-Jurado M., Aranda P., Vidal-Valverde C., Tenorio E., Porres J. (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J. Physiol Biochem, 56, 283–294. 10.The Merck index (12th) p.1268. 11.Greiner, R., U. Konietzny, K. D. Jany (1993) Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys., 303, 107–113. 12.Pandey A., Szakacs G., Soccol C. R., Rodriguez-Leon J. A., Soccol V. T. (2001) Production, purication and properties of microbial phytases. Bioresource Technology, 77, 203-214.
13.Jongbloed, A. W., Z. Mroz, and P. A. Kemme. (1992) The effect of supplementary Aspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract. J. Anim. Sci., 70, 1159–1168. 14.Hsing-Mo Chu et al. (2004) Unpublished data. 15.L.J. Yanke, L.B. Selinger, K.-J. Cheng (1999) Phytase activity of Selenomonas ruminantium: a preliminary characterization. Letters in Applied Microbiology, 29,20-25. 16.J. Kerovuo, M. Lauraeus, P. Nurminen, N. Kalkkinen, J. Apajalahti (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol., 64 2079–2085. 17.Sejeong Shin, Nam-Chul Ha, Byung-Chul Oh, Tae-Kwang Oh, and Byung-Ha Oh (2001) Enzyme Mechanism and Catalytic Property of �� Propeller Phytase. Structure, 9, 851–858. 18.B.C. Oh, B.S. Chang, K.H. Park, N.C. Ha, H.K. Kim, B.H. Oh, T.K. Oh (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry, 40, 9669–9676. 19.Kerovuo J., Rouvinen J., Hatzack F. (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase : indication of a novel reaction mechanism. Biochem. J., 352, 623-628. 20.Giboson D. M., Ullah A. H. (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch. Biochem. Biophys., 260, 503-513. 21.Maenz D. D., Engele-Schaan C. M., Newkirk R. W., Classen H. L. (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol., 81, 177–192. 22.Wyss M., Brugger R., Kronenberger A., Remy R., Fimbel R., Oesterhelt G., Lehmann M., Loon A. P. (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol., 65, 367–373. 23.Ostanin K., Harms E. H., Stevis P. E., Kuciel R., Zhou M. M., Van Etten R. L. (1992) Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J. Biol. Chem., 267, 22830–22836. 24.Lindqvist Y., Schneider G., Vihko P. (1994) Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism. Eur. J. Biochem., 221, 139–142. 25.Porvari K. S., Herrala A. M., Kurkela R.M., Taavitsainen P.A., Lindqvist Y., Schneider G., Vihko P.T. (1994) Site-directed mutagenesis of prostatic acid phosphatase. Catalytically important aspartic acid 258, substrate specificity, and oligomerization. J. Biol. Chem., 269, 22642–22646. 26.Hong C. Y., Cheng K. J., Tseng T. H., Wang C. S., Liu L. F., Yu S. M. (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Research, 13, 29-39. 27.Shimizu, M. (1992) Purification and characterization of phytase from Baccillus subtilis (natto) N-77. Biosci. Biotech. Biochem., 56, 1266-1269. 28.Otwinowski, Z., W. Minor. (1997) Processing of the X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307–326. 29.Matthew B. W. (1968) J. Mol. Biol., 33, 491- 497. 30.J. Navaza. (1994) AMoRe: an automated package for molecular replacement. Acta Cryst., A50, 157-163. 31.Brünger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse Kunstleve, J.-S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr., D54, 905–921.
32.McRee, D. E. (1999) XtalView / Xfit — a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 125, 156–165. 33.Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26, 283-291. 34.Kraulis P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst., 24, 946-950. 35.R. M. Esnouf. (1999) Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr., D55, 938-940. 36.Anthony Nicholls, Kim Sharp, Barry Honig (1991) PROTEINS, Structure, Function and Genetics, 11, 4, 281. 37.Wallace A. C., Laskowski R. A., Thornton J. M. (1995) LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Prot. Eng., 8, 127-134. 38.Wang F., Li W., Emmett M. R., Hendrickson C. L., Marshall A. G., Zhang Y. L., Wu L., Zhang Z. Y., (1998) Conformational and Dynamic Changes of Yersinia Protein Tyrosine Phosphatase Induced by Ligand Binding and Active Site Mutation and Revealed by H/D Exchange and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Biochemistry, 37, 15289-15299 39.Song H., Hanlon N., Brown N. R., Noble M. E. M., Johnson L. N., Barford D. (2001) phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phospho CDK2. Mol. Cell, 7, 615-616 40.Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P., (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323-334 41.Guan K. L., Dixon J. E. (1991) Evidence for protein tyrosine phosphatase catilysis proceeding via a cysteine phosphate intermediate. J.Biol. Chem., 266, 17026-17030 42.Cho H., Krishnaraj R., Bannwarth W., Walsh C. T., Anderson K. S. (1992) Isolation and structural elucidation of a novel phosphocysteine intermediate in the LAR protein tyrosine phosphatase enzymic pathway. J. Am. Chem. Soc., 114, 7296-7298 43.Stuckey J. A., Schubert H. L., Fauman E. B., Zhang Z. Y., Dixon J. E., Saper M. A. (1994) Crystal structure of Yersinia protein tyrosine phosphatase at 2.5Å and the complex with tungstate. Nature, 370, 571-575. 44.Denu J. M., Stuckey J. A., Saper M. A., Dixon J. E. (1995) Form and function in protein dephosphorylation. Cell, 87, 361-364. 45.Lohse D. L., Denu J. M., Santoro N., Dixon J. E. (1997) Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein tyrosine phosphatase PTP1. Biochemistry, 36, 4568-4575. 46.Zhang Z. Y. (1998) Protein tyrosine phosphatases. Biological functions, Structural characteristics and mechanism of catalysis. Crit. Rev. Biochem., 33, 1-52. 47.Jia Z., Barford D., lint A. J., Tonks N. K. (1995) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science, 268, 1754-1758. 48.Yang J., Liang X., Niu T., Meng W., Zhao Z., Zhou G. W. (1998) Crystal structure of the catalytic domain of proteintyrosine phosphatase SHP-1. J. Biol. Chem., 273, 28199-28207. 49.Yang J., Niu T., Zhang A., Mishra A. K., Zhao Z. J., Zhou G. W. (2002) Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell Biochem., 84(1), 47-55 50.Dillet V., Van Etten R. L., Bashford D. (2000) Stabilization of charges and protonation studies in the active site of protein tyrosine phosphatases: A computational study. J. Phys. Chem., B104, 11321– 11333.
51.Vos S., de Jersey J., Martin J. L. (1997) Crystal structure of Escherichia coli xanthine phosphoribosyltransferase. Biochemistry, 36, 4125–4134. 52.Ploegman J. H., Drent G., Kalk K. H., Hol W. G., Heinrikson R. L., Keim P., Weng L., Russell J. (1978) The covalent and tertiary structure of bovine liver rhodanese. Nature, 273, 124–129. 53.http://lamar.colostate.edu/~sreeram/CDPro 54.Sreerama N., Woody R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem., 287, 252-60. 55.Scapin C., Patel S., Patel V., Kennedy B., Asante-Appiah E. (2001) The structure of apo protein-tyrosine phosphatase 1B C215S mutant: More than just an S-O change. Protein Science, 10, 1596–1605.
|