跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志涵
論文名稱:變幅動態波動模型與傳統GARCH預測能力之比較 -以臺灣加權股價指數為例
論文名稱(外文):Comparison the forecasting of Range-based and Return-based GARCH model -Cases of TAIEX index
指導教授:張光亮張光亮引用關係
指導教授(外文):Kuang-Liang Chang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用經濟學系研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:40
中文關鍵詞:CARR模型GARCH變幅波動性伽瑪分配
外文關鍵詞:CARR modelRangevolatilityGamma distributionRange-basedReturn-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
波動性的預測近年來一直學者們關心的焦點。傳統GARCH模型解釋了資產報酬率的異質變異情況,但由於實際變異數無法觀察,以致無法確切的描繪真實波動性的現象。Chou (2005)提出CARR(Conditional Autoregressive Range)模型,探討變幅與時而變的動態過程,並提出指數分配、韋伯分配皆可做為變幅的分配設定。本文以CARR模型為基礎,改變分配為指數、韋伯與伽瑪分配,以臺灣加權股價指數為資料進行分析,比較不同分配設定下CARR的差異。另將CARR與GARCH結合,試圖獲取較佳的樣本外預測結果,並比較Range-based GARCH與Return-based GARCH對於報酬與波動性預測能力的優劣。實證結果顯示,伽瑪分配在配適上是較佳的分配設定,另外透過樣本外預測力比較,GARCH-CARR比傳統GARCH模型具有較好的預測能力。
In recent decades, many studies have focused on the forecasting of volatility. The GARCH model provides the heteroskedasticity of the asset returns. But estimating the volatility can be difficult, because volatility is not observable. Chou(2005) proposed CARR (Conditional Autoregressive Range) model to explain the time-varying of range. In this study, We use CARR model by using TAIEX index data from 1999 to 2011, to compare different distribution (exponential, Weibull and Gamma distribution). And combine the CARR model and GARCH model, to compare the out-of-sample forecasts of Range-based GARCH and Return-based GARCH. We find the Gamma distribution is the best of those assumptions. And GARCH-CARR model provides the better prediction of volatility.
摘要 I
ABSTRACT II
誌謝辭 III
第一章 前言 1
第二章 文獻回顧 3
第三章 研究方法 8
第一節 GARCH模型 8
第二節 CARR模型 9
第三節 AR-GARCH-CARR模型 13
第四章 資料分析 15
第一節 資料選取 15
第二節 資料特性 15
第五章 實證分析 18
第一節 CARR模型參數結果與分析 18
第二節 AR-GARCH-CARR模型參數結果與分析 24
第三節 樣本外預測 26
第六章 結論 29
參考文獻 30

劉吉振 (2005). “考量內分位數變幅的CARR模型之實證分析” 國立交通大學經營管理研究所碩士論文
Alizadeh, S., M.W. Brandt and F.X. Diebold, 2002, “Range-based Estimation of Stochastic Volatility Models.” Journal of Finance 57(3),1047-1091.
Andersen, T.G., and B.E. Sorensen, 1997, “GMM and QML Asymptotic Standard Deviations in Stochastic Volatility Models.” Journal of Econometrics 76,397-403.
Andersen, T.G., and T. Bollerslev, 1998, “Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts.” International Economic Review 39(4),885-905.
Beckers, S., 1983, “Variances of Security Price Returns Based on High, Low and Closing Prices.” Journal of Business 56(1),97-112.
Bernanke, B.S. and M. Gertler, 1999, “Monetary Policy and Asset Price Volatility.” Economic Review 84(4),17-52
Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81(3),637-654.
Blattberg, R. C., and N. J. Gonedes, 1974, “A Comparsion of the Stable and Student Distribution as Statistical Model for Stock Prices.” Journal of Business 47,244-280
Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroscedasticity.” Journal of Econometrics 31, 307-327.
Brownless, C.T. and G.M. Gallo, 2010, “Comparison of volatility measure: a risk management perspective.” Journal of Financial Econometrics 8,29-56.
Chen, C.W.S., R. Gerlach and E.M.H. Lin, 2008, “Volatility Forecasting Using Threshold Heteroskedastic Models of the Intra-day Range.”Computational Statistics & Data Analysis 52(6),2990-3010.
Chou, R.Y., 2005, “Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model.” Journal of Money Credit and Banking 37(3), 561-582.
Chou, R.Y., 2006, “Modeling the Asymmetry of Stock Price Movements Using Price Ranges.” Advances in Econometrics 20,231-257.
Chou, R.Y., C.C. Wu and N. Liu, 2009, “Forecasting Time-Varying Covariance with a Range-Based Dynamic Conditional Correlation Model.”Review of Quantitative Finance and Accounting 31(4), 327-345.
Chou, R.Y. and N. Liu, 2010, “The Economic Value of Volatility Timing using a Range-Based Volatility Model.” Journal of Economic Dynamics & Control 34,2288-2301.
Engle, R.F., 1982, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.”Econometrica 50, 987-1008.
Engle, R.F., 2002, “Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH models.”Journal of Business and Economic Statistics 20(3),339-350
Engle, R.F., D.M. Lilien and R.P. Robins, 1987, “Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model.” Econometrica 55(2), 391-407.
Fama, E., 1965a, “Behavior of Stock Market Price.” Journal of Business 38,34-105
Friedman, M., 1977, “Nobel Lecture: Inflation and Unemployment.” Journal of Political Economy 85, 451-472.
Glasserman, P. and K.K. Kim, 2011, “Gamma expansion of the Heston Stochastic Volatility Model.” Finance and Stochastics 15(2), 267-296.
Glosten, L.R., R. Jagannathan, and D.E. Runkle, 1993, “On the Relation Between the Expected Value and the Volatility of Nominal Excess Return on Stocks.” Journal of Financial 48,1779-1801.
Harvey, A., E. Ruiz and N. Shephard, 1994, “Multivariate Stochastic Variance Models.” Review of Economic Studies 61,247-264.
Hull, J. and A. White, 1987, “The Pricing of Options on Assets with Stochastic Volatilities.” Journal of Financial 42, 281-300.
Kunitomo,N., 1992, “Improving the Parkinson Method of Estimating Security Price Volatilities.” The Journal of Business 65(2),295-302.
Lo, A., 1991, “Long Memory in Stock Market Prices.” Econometrica 59, 1279-1313.
Lucas, R.E. Jr., 1973, “Some International Evidence on Output-Inflation Tradeoffs.” American Economic Review 63, 326-334.
Madan, D.B. and E. Seneta, 1990, “The Variance Gamma (V.G.) Model for Share Market Returns.” Journal of Business 63(4), 239-265.
Mandelbrot, B., 1963, “The Variation of Certain Speculative Prices.” The Journal of Business 20,87-109.
Nelson, D.B., 1991, “Conditional Heteroskedasticity in Asset Pricing: A New Approach.” Econometrica 59,347-370.
Parkinson, M., 1980, “The Extreme Value Method for Estimating the Variance of Rate of Return.” Journal of Business 53, 61-65.
Poon, S.H. and C.W.J. Granger, 2003, “Forecasting Volatility in Financial Markets: A Review.” Journal of Economic Literature 41, 478-539.
Praetz, P. D., 1972, “The Distribution of Share Price Charges.” Journal of Business 45,49-55
Wiggins, J.B., 1991, “Empirical Tests of the Bias and Efficiency of the Extreme-value Variance Estimator of Common Stocks.” The Journal of Business 64(3),417-432.
Wu,C.C. and S.S. Liang, 2011, “The Economic Value of Range-Based Covariance between Stock and Bond Returns with Dynamic Copulas.” Journal of Empirical Finance 18,711-727.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊