跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林億鑫
研究生(外文):Yi-shin Lin
論文名稱:具矩形截面複合材料螺旋形彈簧動態特性之探討
論文名稱(外文):Vibration Analysis of Fiber-Reinforced Composite Helical Springs with Rectangular Cross Sections
指導教授:張銘永
口試委員:陳定宇陳春福
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:120
中文關鍵詞:
外文關鍵詞:no
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用兩節點,每節點有九個自由度的直樑元素,發展出一模擬具矩形截面螺旋形彈簧動態特性的有限元素模式,其中螺旋彈簧材料可為等向性材料或複合材料。所採用的直樑元素包含橫向剪力變形、扭轉、截面翹曲、弦向曲率、以及軸向、橫向和側向位移等效應。
本文採用劉大成[11]的直樑元素運動方程,其藉由漢米爾頓原理配合有限元素推導得到。為了應用此直樑元素分析螺旋彈簧動態特性,需先求得彈簧幾何形狀與直樑元素所採用區域座標之間關係。為此目的,本文利用 Frenet-Serret formulas [13],導出每一元素區域座標與全域座標間的座標轉換矩陣,再利用此座標轉換矩陣並考慮相鄰兩直樑元素之間共同節點位移的連續性,找出位移轉換矩陣。藉此位移轉換矩陣以及直樑元素的質量與勁度矩陣,推導出分析具矩形截面螺旋形彈簧動態特性的有限元素方程的全域質量與勁度矩陣。
本文實例中首先分析等向性鋼材螺旋彈簧,並與套裝軟體 ansys比較,發現在兩端無拘束和一端固定都是在寬厚比值為 3 時,本文分析值與 ansys 結果相差較少。其次,本文分析了兩端為自由端(ff)和一端為固定端(cf)的單層與疊層複合材料螺旋彈簧,探討不同寬厚比(b/h)、纖維角度、疊層角度對系統自然頻率和模態之影響。由本文分析結果顯示,單層複材彈簧在不同寬厚比,其自然頻率隨纖維角度之變化並沒有規律性。分析複材疊層彈簧時,僅考慮 b/h=3 的情形。對疊層[0/θ/0/-θ]s而言,不管彈簧是無拘束或頭端拘束,自然頻率最大值都會出現在θ值接近 45 度時。當彈簧頭端拘束時,疊層[0/θ/0/-θ]s與[90/θ/0/-θ]s於第二與第三模態會出現 w 與 ϕ的耦合振型。當彈簧無拘束時,這兩種疊層於第七或第八也出現此 w 與ϕ的耦合模態。

In this thesis, a finite element model based on two-noded straight beam finite elements, with each node of nine degrees of freedom, is developed to study the dynamic characteristics of helical springs having rectangular cross sections. The helical springs could be made of isotropic materials or fiber-reinforced composite materials. The straight beam element being adopted has included the effects of the transverse shear deformation, torsion, cross-section warping, chordwise curvature, axial, transversal and lateral displacements.
The equation of motion of the straight beam element developed in [11] is used, which is derived by employing Hamilton’s principle together with the finite element method. In order to apply the straight beam element to the analyses of the dynamic characteristics of the helical spring, the relation between the spring geometry and the local coordinate systems chosen for straight beam elements must be obtained first. For this purpose, Frenet-Serret formulas [13] are used to derive the coordinate transformation matrix between local coordinate systems of beam elements and global coordinate system. By using the obtained coordinate transformation matrices and considering the continuity of the displacement of the common node between two adjacent straight beam elements, the displacement transformation matrices for these two beam elements are found. With displacement transformation matrices and the mass and stiffness matrices of the straight beam elements, the global mass and stiffness matrices of helical springs are then derived.
In the numerical examples, first, the steel helical springs free of constraints and with one of its ends fixed are analyzed. The results are compared with those obtained from commercial software Ansys. It is shown that in both boundary conditions the natural frequencies obtained from the present model and those of Ansys are better in agreement when the width to thickness ratio (b/h) of spring is three. Next, the single-layered and laminated composite helical springs are studied, in which the influences of the width to thickness ratio (b/h), the fiber angle, and the angles of lamination on the natural frequencies and mode shapes are investigated. It is found that for different b/h ratios, natural frequencies of the single-layered composite spring vary irregularly with fiber angles. When analyzing composite laminated springs, only cases with b/h = 3 are considered. For springs with lamination [0/θ/0/-θ]s regardless of being free or fixed at one end, the maximum values of the natural frequencies appear at the angle θ close to 45 degrees. When the spring is fixed at one end, both 2nd and 3rd modes of composite springs with laminations [0/θ/0/-θ]s and [90/θ/0/-θ]s are coupling mode of w and ϕ. When the springs are free, springs of both laminations also have this coupling mode to appear either at 7th or 8th mode.

誌謝………………………………………………………………………I
中文摘要…………………………………………………………………II
ABSTRACT…………………………………………………………………IV
目錄………………………………………………………………………VI
符號說明…………………………………………………………………VIII
圖目錄 ……………………………………………………………………X
表目錄……………………………………………………………………XIV
第一章 緒論……………………………………………………………1
1.1 前言…………………………………………………………………1
1.2 文獻回顧……………………………………………………………1
1.3 研究目的與內容……………………………………………………3
第二章 理論推導…………………………………………………………5
2.1 單層複合材料板的本構方程式………………………………………5
2.2 直樑元素的運動方程……………………………………………10
2.2.1 直樑元素的位移場..…………………………………………10
2.2.2 內插函數………………………………………………………14
2.2.3 運動方程式……………………………………………………18
2.3 轉換矩陣推導……………………………………………………21
2.3.1 座標轉換矩陣…………………………………………………21
2.3.2 位移轉換矩陣…………………………………………………27
2.4 轉換後直樑元素之運動方程……………………………………33
第三章 實例分析………………………………………………………34
3.1 數值驗證……………………………………………………………34
3.2 實例分析…………………………………………………………79
3.2.1 無拘束彈簧……………………………………………………79
3.2.2 頭端固定彈簧…………………………………………………85
3.2.3 不同疊層角度下的螺旋彈簧振動頻率………………………91
第四章 結論與未來展望…………………………………………………100
4.1 結論……………………………………………………………………100
4.2 未來展望…………………………………………………………101
參考文獻…………………………………………………………………102
附錄 A:直樑元素的質量與勁度矩陣[11]……………………………104
附錄 B:第三張一些實例的模態圖……………………………………113

[1] V. Yildirim, “Investigation of Parameters Affecting Free Vibration Frequency of Helical Springs, ” International Journal for Numerical Methods In Engineering,Vol. 39, pp. 99-114, 1996.
[2] V. Yildirim, “Free Vibration Analysis of Non-Cylindrical Coil Springs by Combined Use of The Transfer Matrix And The Complementary Functions Methods, ” Communications In Numerical Methods in Engineering, Vol. 13, pp. 487-494, 1997.
[3] V. Yildirim and N. Ince, “Natural Frequencies of Helical Springs of Arbitrary Shape, ” Journal of Sound and Vibration, Vol. 204, No. 2, pp. 311-329 , 1997.
[4] G. G. Chassie, L. E. Becker and W. L. Cleghorn, “On The Buckling of Helical Springs Under Combined Compression And Torsion, ”International Journal of Mechanical Sciences, Vol. 39. No. 6, pp. 697-704, 1997.
[5] V. Yildirim and E. Sancaktar, “Linear free Vibration Analysis of Cross-Ply Laminated Cylindrical Helical Springs, ” International Journal of Mechanical Sciences, Vol. 42 , pp. 1153-1169, 2000.
[6] V. Yildirim, “Free Vibration Characteristics of Composite Barrel and Hyperboloidal Coil Springs, ” Mechanics of Composite Materials and Structures, Vol. 8, pp. 205–217, 2001
[7] F. F. Calim , “Dynamic analysis of composite coil springs of arbitrary shape, ”Composites Part B , Vol. 40B, pp. 741-757, 2009.
[8] A. M. Yu and Y. Hao, “Free vibration analysis of cylindrical helical springs with noncircular cross-sections, ” Journal of Sound and Vibration, Vol. 330, pp. 2628-2639, 2011.
[9] R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994
[10] T. P. Philippidis and P. S. Theocaris, “The Transverse Poisson''s Ratio in Fiber Reinforced Laminase by Means of a Hybrid Experimental Approach, ” Journal of Composite Materials, Vol. 28 , No. 3, 1994.
[11] 劉大成, 複合材料曲樑振動特性之探討, 碩士論文, 中興大學機械工程研究所, 2012
[12] J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, 1984
[13] Murray R. Spiegel, Vector Analysis, Schaum’s Outline Series: McGraw-Hill, 1959
[14] D. A. Saravanos and D. A. Hopkins, “Effects of Delaminations on The Damped Dynamic Characteristics of Composite Laminates : Analysis and Experiments, ” Journal of Sound and Vibration, Vol. 192, No. 5 , pp. 977-993, 1996

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top