跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭哲良
研究生(外文):Che-liang Kuo
論文名稱:室溫離子液體做為鋰離子電池中安全電解質的特性與研究
論文名稱(外文):Study and Characterization of Room Temperature Ionic Liquids as Safety Electrolytes for Lithium Ion Battery
指導教授:黃俊誠黃俊誠引用關係
指導教授(外文):Chiung-cheng Huang
口試委員:黃俊誠
口試日期:2012-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:室溫離子液體電解液鋰離子電池離子液體
外文關鍵詞:1-butyl-1-methylpyrrolidiniumbis (trifluoromethaElectrolyteRoom temperature ion liquidLithium-ion batterylithium bis(trifluoromethanesulfonyl)imide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今鋰離子電池大多採用具有揮發性及可燃性的傳統有機電解質當作其主要成份,因此在本實驗中我們選用具有低揮發性、不可燃性、高熱穩定性、寬廣的電化學視窗和對水和空氣穩定的室溫離子液體來取代傳統有機電解質作為鋰離子電池的電解液。然而在合成室溫離子液體時,我們選用四季銨鹽為陽離子,例如:N-butyl-N-methylpyrrolidinium, N-butyl-N-methylpiperidinum, N-allyl-N-methylpyrrolidinium, Borane-trimethylamine complex 和 Boran-triethylamine complex;而lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)則做為陰離子,其結構以1H-NMR進行鑑定,用 熱重分析(thermogravimetric analyser)量測其高熱穩定性;熔點、結晶點及玻璃轉移溫度採用熱差掃描法(differential scanning calorimeter)和量測導電度與黏度等物理性質,並利用線性伏安掃描法測量其電化學穩定性。
本實驗試著以兩種室溫離子液體N-butyl-N-methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PY14TFSI) 及 N-Allyl-N-methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PYATFSI)以不同體積比進行混合(1:9, 3:7, 5:5, 7:3, 9:1, v/v),發現混合離子液體具有不錯的熱穩定性、物理和電化學性質,尤其當體積比為5:5時,發現當PY14TFSI:PYATFSI體積比為5:5時,此時具有最寬廣的電化學視窗5.83V,導電度可達3.738mS/cm-1,熱裂解溫度為363.06oC,且也擁有較PY14TFSI和PYATFSI更低的熔點Tm為-25.64oC,結晶點Tc為-57.44oC。,並嘗試添加入0.3 m LiTFSI在PY14TFSI+PYATFSI (5:5, v/v)中,以Li/LiNi0.5Mn1.5O4,於1/20C下進行充放電測試,雖然在循環穩定性的表現並不優異,但這卻是提供我們於未來改進的重要資訊之一。
Due to the volatilization and inflammation of traditional organic solvent as the main components of electrolyte in the lithium ion batteries, in this study, we choose room temperature ion liquid which has low volatility, nonflammable, thermal stability, wide liquid range and the water and air stability to replace traditional organic electrolytes.
Room temperature ion liquids (RTILs) we choose quaternary ammonium salts as cations, such as N-butyl-N-methylpyrrolidinium, N-butyl-N-methylpiperidinum, N-allyl-N-methylpyrrolidinium, Borane-trimethylamine complex and Boran-triethylamine complex, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as anion. They were synthesized by the traditional methodologies and characterized by 1H-NMR. Their thermal stabilities were determined by thermogravimetric analyer and melting point, crystallization point and glass transition point were by differential scanning calorimeter . We utilize linear sweep voltammograms to determine their electrochemical stabilities. In addition, their conductivity and viscometer were also measured.
When two RTILs, N-butyl-N-methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PY14TFSI) and N-Allyl-N-methyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (PYATFSI) were mixed with different ratios (1:9, 3:7, 5:5, 7:3, 9:1, v/v), this series mixed electrolytes showed better thermal stabilities, physical and electrochemical properties. Particularly, the electrolyte composed of the ratio (5:5) of PY14TFSI and PYATFSI shows the widest electrochemical stability window (5.83V), ionic conductivity (3.738 mScm-1), thermal stability (363.06°C), the lowest melting point (-25.64°C) and crystallization point (-57.44°C). The cycle performance of Li/LiNi0.5Mn1.5O4 half cell using 0.3m LiTFSI in PY14TFSI+PYATFSI (5:5, v/v) were tested at 1/20 C rate. Although the preliminary cycle stability performance was not excellent, this provide us an important information for the improvement in the future.
目錄
謝誌 I
ABSTRACT III
中文摘要 V
目次 VII
圖目錄 XI
表目錄 XVI
緒論 1
1.1 前言 1
第二章 文獻回顧 3
2.1 離子液體 3
2.2離子液體的定義 8
2.3離子液體的性質測定 10
2.3.1 熔點(Melting Point) 10
2.3.2 熱穩定性(Thermal Stability) 11
2.3.3 密度( Density ) 12
2.3.4 黏度( Viscosity ) 14
2.3.5 導電度( Conductivity ) 14
2.3.6 電化學穩定性( Electrochemical Stability ) 16
2.3.7含水率與保存環境對電化學穩定性的影響 20
2.3.8正極材料 22
2.4研究動機 23
第三章 實驗 26
3.1 實驗藥品 26
3.2 實驗儀器 27
3.3 溴塩的製備 28
3.3.1 1-butyl-1-methylpyrrolidinium bromide(PY14Br) 28
3.3.2 1-butyl-1-methylpiperidinum bromide(PI14 Br) 29
3.3.3 1-allyl-1-methylpyrrolidinium bromide(PYABr) 30
3.4 室溫離子液體的製備 31
3.4.1 1-butyl-1-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PY14TFSI) 31
3.4.2 1-butyl-1-methylpiperidinumbis (trifluoromethanesulfonyl) imide (PI14TFSI) 32
3.4.3 (N111)(N112)BH2-TFSI 33
3.4.4 (N111)(PY)BH2-TFSI 35
3.4.5 1-allyl-1-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYATFSI) 37
3.5 核磁共振氫原子光譜(1H-NMR) 37
3.6 熱重量分析 38
3.7 熱示差掃描 38
3.8 導電度計 38
3.9 黏度計 38
3.10 電化學分析 38
3.11 鈕扣型電池分析 39
3.11.1 鈕扣型電池製備 39
3.11.2 充放電測試 39
第四章 結果與討論 40
4.1 室溫離子液體1-butyl-1-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PY14TFSI) 40
4.1.1 合成與結構鑑定 40
4.1.2 PY14TFSI熱重量分析(Thermogravimetric Analysis, TGA) 43
4.1.3 PY14TFSI熱示差掃瞄(Differential Scanning Calorimeter, DSC)熱穩定性分析 46
4.1.4 PY14TFSI導電度與黏度測試 48
4.1.5 PY14TFSI線性伏安掃描法之電化學視窗測試 51
4.2 室溫離子液體1-butyl-1-methylpiperidinumbis (trifluoromethanesulfonyl)imide (PI14TFSI) 53
4.2.1 合成與結構鑑定 53
4.2.2 PI14TFSI熱重量分析(Thermogravimetric Analysis, TGA) 56
4.2.3 PI14TFSI熱示差掃瞄(Differential Scanning Calorimeter, DSC)熱穩定性分析 58
4.2.4 PI14TFSI導電度與黏度測試 60
4.2.5 PI14TFSI線性伏安掃描法之電化學視窗測試 62
4.3室溫離子液體 (N111)(N112)BH2-TFSI and (N111)(PY)BH2-TFSI 64
4.3.1 合成與結構鑑定 64
4.3.2 (N111)(N112)BH2-TFSI與(N111)(PY)BH2-TFSI))熱重量分析(Thermogravimetric Analysis, TGA) 67
4.3.3 (N111)(N112)BH2-TFSI and (N111)(PY)BH2-TFSI)導電度測試 71
4.3.4 (N111)(N112)BH2-TFSI and (N111)(PY)BH2-TFSI)黏度測試 72
4.4室溫離子液體 1-allyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYATFSI) 75
4.4.1合成與結構鑑定 75
4.4.2 PYATFSI熱重量分析(Thermogravimetric Analysis, TGA) 77
4.4.3 PYATFSI熱示差掃瞄(Differential Scanning Calorimeter DSC)熱穩定性分析 79
4.4.4 PYATFSI導電度與黏度測試 81
4.4.5 PYATFSI線性伏安掃描法之電化學視窗測試 83
4.5製備混合離子液體PY14TFSI+PYATFSI 85
4.5.1混合離子液體PY14TFSI+PYATFSI熱重量分析(Thermogravimetric Analysis, TGA) 86
4.5.2混合離子液體PY14TFSI+PYATFSI熱示差掃瞄(Differential Scanning Calorimeter, DSC)熱穩定性分析 88
4.5.3混合離子液體PY14TFSI+PYATFSI導電度與黏度測試 91
4.5.4混合離子液體PY14TFSI+PYATFSI線性伏安掃描法之電化學視窗測試 93
4.6混合離子液體PY14TFSI+PYATFSI循環穩定性測試 96
第五章 結論 99
參考文獻 100
附錄 103
[1]M. J. Earle, K. R. Seddon, Pure Appl. Chem., 72 (2000) 1391.
[2]H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, J. Am. Chem. Soc., 97 (1975) 3265.
[3]R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, C. L. Hussey, J.
Electrochem. Soc., 126 (1979) 1644.
[4]J. Robinson, R. A. Osteryoung, J. Am. Chem. Soc., 101 (1979) 323.
[5]J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 21 (1982) 1263.
[6]E. I. Cooper, E. J. M. O’ Sullivan, R. J. Gale, G. Blomgren, H. Kojima, J. Electrochem. Soc., 92 (1992) 386.
[7]J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun., (1992) 965.
[8]R. T. Carlin, H. C. De Long, J. Fuller, P. C. Trulove, J. Electrochem. Soc., 73 (1994) 141.
[9]P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron., 15 (1996) 1217.
[10]P. Bonhote, A. P. Dias, N. Papageorgious, K. Kalyanasundaram, M. Gratzel, Inorg. Chem., 35 (1996) 1168.
[11]張嘉航, 國立成功大學化學研究所碩士論文, (2007)
[12]J. S. Wilkes, Green Chem., 4 (2002) 73.
[13]R. Hagiwara, Y. Ito, J. Fluorine Chem., 105 (2000) 221.
[14]P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed., 39 (2000) 3772.
[15]J. S. Wilkes, J. A. Levisky, R. A. Wilson, C.L. Hussey, Inorg. Chem., 21 (1982) 1263.
[16]W.T. Ford, R. J. Hart, J. Org. Chem., 38 (1973) 3916.
[17]K. R. Seddon, Kinet. Catal. Engl. Transl., 37 (1996) 693.
[18]P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem., 35 (1996) 1168.
[19]A. Elaiwi, P. B. Hitchcock, K.R. Seddon, N. Srinivasan, Y. M. Tan, T. Welton, J.A. Zora, J. Chem. Soc. Dalton Trans., (1995) 3467.
[20]M. L. Mutch, J. S. Wilkes, Proc. Electrchem. Soc., 98 (1998) 254.
[21]A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J.
Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem., 88 (1984) 2614.
[22]J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc., 133 (1986) 325.
[23]K. R. Seddon, A. Stark, M. J. Torres, Pure Appl. Chem., 72 (2000) 2275.
[24]K. N. Marsh, J. A. Boxall, and R. Lichtenthaler, Fluid Phase Equilibria., 219 (2004) 93.
[25]J. G. Huddleston and R. D. Rogers, Chem. Commun., (1998) 1765.
[26]P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorganic Chemistry, 35 (1996) 1168.
[27]J. D. Edwards, C. S. Taylor, A. S. Russell, and L. F. Maranville, J. Electrochem. Soc., 99 (1952) 527.
[28]G. P. Smith, G. F. Petersen, J. Chem. Eng. Data, 6 (1961) 493.
[29]J. Braunstein, G. D. Robbins, J. Chem. Edu., 48 (1971) 52.
[30]A. M. M. Ali, M. A. Ghandour, S. A. E. Shatoury, S. M. Ahmed, Electroanalysis, 12 (2000) 155.
[31]C. M. Wang, H. L. Li, Electroanalysis, 10 (1988) 44.
[32]D.K.Gosser, VCH New York, (1993).
[33]曾茂源, 國立成功大學化學研究所碩士論文, (2003).
[34]Z. B. Zhou, H. Matsumoto, K. Tatsumi, Chem. Eur. J., 12 (2006) 2196.
[35]T. Ruther, T. D. Huynh, J. Huang, A. F. Hollenkamp, E. A. Salter, A.Wierzbicki, K. Mattson, A. Lewis, J. H. D. Jr., Chem. Mater., 22 (2010) 1038.
[36]T. Yim, H. Y. Lee, H. J. Kim, J. Mun, S. Kim, S. M. Oh, Y. G. Kim, Bull. Korean Chem. Soc., 28 (2007) 1567.
[37]A. Orita, K. Kamijima, M. Yoshida, J. Power Sources, 195 (2010) 7471.
[38]T. Y. Wu, S. G. Su, H. P. Wang, Y.C. Lind, S. T. Gung, M. W. Lin, I. W. Sun, Electrochim. Acta, 56 (2011) 3209.
[39]Y. An, P. Zuo, X. Cheng, L. Liao, G. Yin, Int. J. Electrochem. Sci., 6 (2011) 2398.
[40]S. Randstroma, G.B. Appetecchi, C. Lagergren, A. Morenoa, S. Passerini, Electrochim. Acta, 53 (2007) 1837.
[41]H. Sakaebe, H. Matsumoto, Electrochem. Commun., 5 (2003) 594.
[42]A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, Electrochim. Acta, 50 (2005) 2233.
[43]Z. B. Zhou, H. Matsumoto, K. Tatsumi, Chem. Eur. J., 11 (2005) 752.
[44]H. Matsumoto, H. Sakaebe, K. Tatsumi, J. Power Sources, 146 (2005) 45.
[45]H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources, 160 (2006) 1308.
[46]N. Nanbu, T. Ebina, H. Uno, S. Ishizawa, Y. Sasaki, Electrochim. Acta, 52 (2006) 1763.
[47]陳致成、劉茂煌、陳金銘, 工業材料, 203(2003) 98.
[48]Y.Takeda, K.Nakahara, M.Nishijima, N.Imanashi, O.Yamamoto,M. Takano, and R.Kanno, Mater. Res.Bull., 29 (1994) 659.
[49]A. K. Padhi, K. S. Najundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1609.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊