|
[1] Saraste, M. Oxidative phosphorylation at the fin de siècle. Science. 283:1488-1493; 1999. [2] Biswas, G.; Adebanjo, O. A.; Freedman, B. D.; Anandatheerthavarada, H. K.; Vijayasarathy, C.; Zaidi, M.; Kotlikoff, M.; Avadhani, N.G. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 18:522-533;1999. [3] Hatefi, Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev biochem. 54:1015-1069; 1985. [4] Senior, A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 68:177-231; 1988. [5] Anderson, S.; Bankier, A. T.; Barrell, B. G.; de Bruijn, M. H.; Coulson, A. R.; Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A.; Sanger, F.; Schreier, P. H.; Smith, A. J.; Staden, R.; Young, I. G. Sequence and organization of the human mitochondrial genome. Nature. 290:457-465; 1981. [6] Yakes, F. M.; Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 94:514-519; 1997.
[7] DiMauro, S.; Schon, E. A. Mitochondrial Respiratory-Chain Diseases. N Engl J Med. 348:2656-2668; 2003. [8] Garesse, R.; Vallejo, C. G. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene. 263:1-16; 2001. [9] Moyes, C. D.; Hood, D. A. Origins and consequences of mitochondrial variation in vertebrate muscle. Annu Rev Physiol. 65:177-201; 2003. [10] Kelly, D. P.; Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18:357-368; 2004. [11] Scarpulla, R. C. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 286:81-89; 2002. [12] Scarpulla, R. C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 1576:1-14; 2002. [13] Evans, M. J.; Scarpulla, R. C. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem 264:14361-14368; 1989. [14] Virbasius, J. V.; Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 91:1309-1313; 1994. [15]Larsson, N.-G.; Wang, J.; Wilhelmsson, H.; Oldfors, A.; Rustin, P.; Lewandoski, M.; Barsh, G. S.; Clayton, D. A. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18: 231-236, 1998. [16] Wu, H.; Kanatous, S. B.; Thurmond, F. A.; Gallardo, T.; Isotani, E.; Bassel-Duby, R.; Williams, R. S. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 296:349-352; 2002. [17] Handschin, C.; Rhee, J.; Lin, J.; Tarr, P. T.; Spiegelman, B. M. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A. 100:7111-7116; 2003. [18] Puigserver, P.; Wu, Z.; Park, C. W.; Graves, R.; Wright, M.; Spiegelman, B. M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829-839; 1998. [19] Andersson, U.; Scarpulla, R. C. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol. 21:3738-3749; 2001. [20] Kressler, D.; Schreiber, S. N.; Knutti, D.; Kralli, A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 277:13918-13925; 2002. [21] Lin, J.; Puigserver, P.; Donovan, J.; Tarr, P.; Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 277:1645-1648; 2002. [22] Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R. C.; Spiegelman, B. M. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98:115-124; 1999. [23] Lehman, J. J.; Barger, P. M.; Kovacs, A.; Saffitz, J. E.; Medeiros, D. M.; Kelly, D. P. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106:847-856; 2000. [24] Goto, M.; Terada, S.; Kato, M.; Katoh, M.; Yokozeki, T.; Tabata, I.; Shimokawa, T. cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun. 274:350-354; 2000. [25] BAAR, K. E. I. T.; WENDE, A. R.; JONES, T. E.; MARISON, M. A. T. T.; NOLTE, L. A.; CHEN, M. A. Y.; KELLY, D. P.; HOLLOSZY, J. O. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886; 2002. [26] Terada, S.; Tabata, I. Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab. 286:E208-E216; 2004. [27] Terada, S.; Goto, M.; Kato, M.; Kawanaka, K.; Shimokawa, T.; Tabata, I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun. 296:350-354; 2002. [28] Irrcher, I.; Adhihetty, P. J.; Sheehan, T.; Joseph, A. M.; Hood, D. A. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol. 284:C1669-C1677; 2003. [29] Pilegaard, H.; Saltin, B.; Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 546:851-858; 2003. [30] Lee, H. C.; Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol. 37:822-834; 2005. [31] Nisoli, E.; Clementi, E.; Paolucci, C.; Cozzi, V.; Tonello, C.; Sciorati, C.; Bracale, R.; Valerio, A.; Francolini, M.; Moncada, S.; Carruba, M. O. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 299:896-899; 2003. [32] Lin, J.; Wu, H.; Tarr, P. T.; Zhang, C. Y.; Wu, Z.; Boss, O.; Michael, L. F.; Puigserver, P.; Isotani, E.; Olson, E. N.; Lowell, B. B.; Bassel-Duby, R.; Spiegelman, B. M. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 418:797-801; 2002. [33] Golden, T.; Melov, S. Mitochondrial DNA mutations, oxidative stress, and aging. Mechanisms of Ageing and Development 122:1577-1589; 2001. [34] Berdanier, C. D.; Everts, H. B. Mitochondrial DNA in aging and degenerative disease. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 475:169-183; 2001. [35] Wallace, D. C. Mitochondrial diseases in man and mouse. Science. 283:1482-1488; 1999. [36] Wei, Y. H.; Lee, C. F.; Lee, H. C.; Ma, Y. S.; Wang, C. W.; Lu, C. Y.; Pang, C. Y. Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 BP-deleted mitochondrial DNA. Ann N Y Acad Sci. 928:97-112; 2001. [37] Heddi, A.; Stepien, G.; Benke, P. J.; Wallace, D. C. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem. 274:22968-22976; 1999. [38] Murdock, D. G.; Boone, B. E.; Esposito, L. A.; Wallace, D. C. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J Biol Chem. 274:14429-14433; 1999. [39] Perez-de-Arce, K.; Foncea, R.; Leighton, F. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants. Biochem Biophys Res Commun. 338:1103-1109; 2005. [40] King, M. P.; Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 246:500-503; 1989. [41] Trounce, I.; Neill, S.; Wallace, D. C. Cytoplasmic transfer of the mtDNA nt 8993 T-->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad Sci U S A. 91:8334-8338; 1994. [42] Yen, H. C.; Nien, C. Y.; Majima, H. J.; Lee, C. P.; Chen, S. Y.; Wei, J. S.; See, L. C. Increase of lipid peroxidation by cisplatin in WI38 cells but not in SV40-transformed WI38 cells. J Biochem Mol Toxicol. 17: 39-46; 2007. [43] Miranda, S.; Foncea, R.; Guerrero, J.; Leighton, F. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun. 258:44-49; 1999. [44] King, M. P.; Attadi, G. Mitochondria-mediated transformation of human rho(0) cells. Methods Enzymol. 264:313-34.:313-334; 1996. [45] Joseph, A. M.; Rungi, A. A.; Robinson, B. H.; Hood, D. A. Compensatory responses of protein import and transcription factor expression in mitochondrial DNA defects. Am J Physiol Cell Physiol. 286:C867-C875; 2004. [46] Mercy, L.; Pauw, A. d.; Payen, L.; Tejerina, S.; Houbion, A.; Demazy, C.; Raes, M.; Renard, P.; Arnould, T. Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import. FEBS J. 272:5031-5055; 2005. [47] Petersen, M.; Wengel, J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 21:74-81; 2003. [48] Mercy, L.; Pauw, A. d.; Payen, L.; Tejerina, S.; Houbion, A.; Demazy, C.; Raes, M.; Renard, P.; Arnould, T. Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import. FEBS J. 272:5031-5055; 2005. [49] Zhang, X.; Odom, D. T.; Koo, S. H.; Conkright, M. D.; Canettieri, G.; Best, J.; Chen, H.; Jenner, R.; Herbolsheimer, E.; Jacobsen, E.; Kadam, S.; Ecker, J. R.; Emerson, B.; Hogenesch, J. B.; Unterman, T.; Young, R. A.; Montminy, M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 102:4459-4464; 2005. [50] Escriva, H.; Rodriguez-Pena, A.; Vallejo, C. G. Expression of mitochondrial genes and of the transcription factors involved in the biogenesis of mitochondria Tfam, NRF-1 and NRF-2, in rat liver, testis and brain. Biochimie. 81:965-971; 1999. [51] Arnould, T.; Vankoningsloo, S.; Renard, P.; Houbion, A.; Ninane, N.; Demazy, C.; Remacle, J.; Raes, M.CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 21:53-63;2002. [52] Suzuki, H.; Kumagai, T.; Goto, A.; Sugiura, T. Increase in Intracellular Hydrogen Peroxide and Upregulation of a Nuclear Respiratory Gene Evoked by Impairment of Mitochondrial Electron Transfer in Human Cells. Biochem Biophys Res Commun. 249:542-545; 1998. [53] Indo, H. P.; Davidson, M.; Yen, H. C.; Suenaga, S.; Tomita, K.; Nishii, T.; Higuchi, M.; Koga, Y.; Ozawa, T.; Majima, H. J. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 7:106-118; 2007. [54] 陳世偉. 碩士論文 Effect of antimycin a on levels of reactive oxygen species, coenzyme Q10 and primary antioxidant enzymes in 143B versus 143B-ρ0 cells; 2006. [55] Fridovich, I. Superoxide Radical and Superoxide Dismutases. Annu Rev Biochem .64:97-112; 1995. [56] Flint, D. H.; Tuminello, J. F.; Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem. 268:22369-22376; 1993. [57] Wredenberg, A.; Wibom, R.; Wilhelmsson, H.; Graff, C.; Wiener, H. H.; Burden, S. J.; Oldfors, A.; Westerblad, H.; Larsson, N. G. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A. 99:15066-15071; 2002. [58] Kelly, D. P.; Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18:357-368; 2004.
|