跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔詩尹
論文名稱:一個生態數學模型解的分歧問題
論文名稱(外文):Bifurcation Results for Steady States of Latka-Volterra Competition Models.
指導教授:陳兆年
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
中文關鍵詞:簡單固有值分歧定理
外文關鍵詞:Simple Eigenvalue Bifurcatioon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
在探討生態物種競爭的行為與過程,Latka-Volterra所提出的模型已被廣泛的研究。在本篇論文中,我們研究的是3種物種競爭的情形,我們探討在何種情況下有非一致分佈共存解的穩定狀態。

Abstract
The Latka-Volterra system is the first model of interacting populations to be considerd. In this thesis,we study the co- existence of the Latka-Volterra system when there are three competing species. We are interesting in the coexistence of non-uniformly distributed steady states.

Contents
1.Introduction...............................1
2.Preliminary................................5
3.Simple Eigenvalue Bifurcatioon.............8
4.Global Bifurcatioon Result................ 14
5.References................................ 18

[1]L. Zhou and C. V. Pao, Asymptotic behavior of a competition-diffusion system in population
dynamics, Nonlinear Analysis, Theory, Methods \& Applications, Vol. 6, No. 11, pp. 1163-1184, 1982.
[2]Peter N. Brow, Decay to uniform states in ecological interactions, SIAM J. Appl. Math. Vol. 38, No, 1, pp. 22-37, 1980.
[3]Paul Waltman, Competition models in population biology, SIAM, 1983.
[4]J. D. Murray, Mathematical biology, springer, 1993.
[5]Crandall, M. G., and Rabinowitz, P. H., Bifurcation from simple eigenvalues,J. Funct. Anal. 8, 1971, pp. 321-340.
[6]Changfeng Gui and Yuan Lou, Uniqueness and Nonuniqueness of Coexistence States in theLotka-Volterra Competition Model, Communications on Pure and Applied Mathematics, Vol. XLVII, 1571-1594 (1994).
[7]Chi, Chia-Wei; Hsu, Sze-Bi; Wu, Lih-Ing On the asymmetric May-Leonard of threecompeting species, SIAM J. Appl. Math. 58 (1998), no. 1, 211-226 (electronic).
[8]M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,Dynamics and Stability of systems Vol. 8, No. 3, pp. 189-217, 1993.
[9]Masayasu Mimura and Paul C. Fife, A 3-component system of competition and diffusion, Hiroshima. Math. J. 16 (1986), 189-207.
[10]Gilbarg,D.,and Trudinger,n.s.,Elliptic Partial Differential Equation of Second Order,2nded.,Springer-Verlag,Berlin,New York,1983.
[11]Murray H.Protter.,and Hans F.Weinberger.,Maximum Principles in Differential Equations,Springer-Verlag.Berlin,New York.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top