|
1. Allgower EL, Georg K. Numerical path following. In Handbook of Numerical Analysis, Ciarlet PG, Lions JL(eds), vol. 5. North-Holland: Amsterdam, 1997. 2. Bank RE, Chan TF. PLTMGC: A multigrid continuation package for solving parametrized nonlinear elliptic systems. SIAM J. Sci. Stat. Comput. 1986; 7:540—559. 3. Bolstad JH, Keller HB. A multigrid continuation method for elliptic problems with folds. SIAM Journal on Scientific and Statistical Computing 1986; 7:1081—1104. 4. Book DL, Fisher S, McDonald BE. Steady-state distributions of interacting discrete vortices. Physical Review Letters 1975; 34:4—8. 5. Brandt A. Multi-level adaptive solutions to boundary value problems. Mathematics of Computation 1977; 31:333—390. 6. Briggs WL, Henson VE, McCormic SF. A Multigrid Tutorial (2nd edn). SIAM Publications: Philadelphia, 2000. 7. Brown PN, Walker HF. GMRES on (nearly) singular systems. SIAM Journal on Matrix Analysis and Applications 1997; 18:37—51 8. Chan TF, Keller HB. Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comput. 1982; 3:173—194. 9. Chang S-L, Chien C-S. A multigrid-Lanczos algorithm for the numerical solutions of nonlinear eigenvalue problems. International J. Bifurcation and Chaos 2003; 13:1217—1228. 10. Chang S.-L, Chien C-S, Jeng B.-W. Implementing two-grid centered difference discretization schemes with Lanczos type algorithms. preprint. 11. Chien C-S,Weng Z-L, Shen C-L. Lanczos type methods for continuation problems. Numer. Linear Algebra Appl. 1997; 4:23—41. 12. Chien C-S, Chang S-L. Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems. Numer. Linear Algebra Appl. 2003; 10:335—355. 13. Chien C-S, Jeng B-W. Two-grid discretization schemes for eigenvalue problems. preprint. 14. Chien C-S, Jeng B-W. Symmetry reductions and a posteriori finite element error estimators for bifurcation problems. Inter. J. Bifurcation and Chaos. 2005. to appear. 15. Chien C-S, Jeng B-W., Gu.Y.-P. A two-grid centered difference discretization scheme for large-scale eigenvalue problems. preprint. 16. Desa C, Irani KM, Ribbens CJ, Watson LT, Walker HF. Preconditioned iterative methods for homotopy curve tracking. SIAM J. Sci. Stat. Comput. 1992; 13:30—46. 17. Dul FA. MINRES and MINERR are better than SYMMLQ in eigenpair computations. SIAM J. Sci. Comput. 1998; 19:1767—1782. 18. Golub GH, van der Vorst HA. Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 2000; 123:35—65. 19. Hackbusch W. Multigrid Methods and Applications. Springer-Verlag: Berlin, 1985. 20. Keller HB. Lectures on Numerical Methods in Bifurcation Problems. Springer-Verlag: Berlin, 1987. 21. Lanczos C. An iteration method for the solution of the eigenvalue problems of linear differential and integral operators. Journal of Research of the National Bureau of Standards 1950; 45:255—282. 22. Lui SH, Golub GH. Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial differential operators. Numer. Algorithms 1995; 10:363—378. 23. Mittelmann HD, Weber H. Multi-grid solution of bifurcation problems. SIAM Journal on Scientific and Statistical Computing 1985; 6:49—85. 24. Paige CC. The computation of eigenvalues and eigenvectors of very large matrices. Ph. D. Thesis, University of London 1971. 25. Paige CC, Saunders MA. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 1975; 12:617—629. 26. Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986; 7:856—869. 27. Sleijpen GLG, van der Vorst HA, Modersitzki J. Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl. 2000; 22:726—751. 28. Walker HF. An adaption of Krylov subspace methods to path following problems. SIAM J. Sci. Comput. 1999; 21:1191—1198. 29. Weber H. Multigrid bifurcation iteration. SIAM Journal on Numerical Analysis 1985; 22:262—279. 30. Xu J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15(1994), pp.231—237. 31. Xu J., Some Two-grid Finite Element Methods. Contemp. Math. 1994; 157:79—87. 32. Xu J., Zhou A. A two-grid discretization scheme for eigenvalue problems. Math. Comput. 1999; 70:17—25.
|