跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/19 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張竣傑
研究生(外文):Jun-Jie Chang
論文名稱:應用傅立葉級數預測雲林科技大學圖書館用電量
論文名稱(外文):Using Fourier Series to Predict Library Utility Usage at NYUST
指導教授:陳維東陳維東引用關係蔡佐良蔡佐良引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建與物業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:傅立葉級數用電量預測流動電費圖書館用電
外文關鍵詞:electricity consumption in libraryElectricity consumption estimatefloating electricity expenseFourier series
相關次數:
  • 被引用被引用:5
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
大學院校之電費掌控,係屬物業管理重要工作之一。舉凡編列預算及節能成效,均須分析及預測用電紀錄,以瞭解用電量的變化情形。現有的用電量預測相關文獻多著墨商業類及住宅類建物,對於他類建築少有文獻可茲參考依循。傳統預測方法大多需要大量的歷史資料做為建置預測模型的基礎,且必須符合統計上的相關檢定,因此在應用上有其限制。
有鑑於學校用電具有週期性的特性,本研究以雲科大圖書館為對象,蒐集九十三至九十五年間圖書館每月用電歷史資料,分別利用時間序列迴歸模型結合傅立葉級數模型及用電量平均法預測九十六年圖書館之每月用電量,再以實際用電量比較確認何者之預測精度較佳。
研究結果顯示,在資料有限的情境下預測圖書館用電量,以誤差平方和(SSE)為模型精準之判斷依據,發現傅立葉級數的預測準確度(SSE=4.16×10^9)優於用電量平均法(SSE=5.15×10^9)。而利用三種不同數據型態進行傅立葉級數預測,發現以九十三至九十五年每月用電歷史資料之預測值優於九十五年、九十四至九十五年兩種數據型態。造成此結果之原因,可能係利用歷史資料越長、時間越長,越能顯示用電量變動之趨勢。此外,本研究亦利用所預測出之用電最佳預測值,計算流動電費並與實際流動電費比較。結果顯示其誤差值為3.98%、精度值高達96.02%,此一結果可供校方規劃未來電力預算之參考。
本研究以傅立葉級數採用少量資料預測用電量,研究架構及結果仍處初步階段,對於隨機因素(Stochastic Factors)造成的變動及歷史資料不足之限制,仍待後續研究進一步探討。後續研究亦可設計一套操作平台(如VB),俾利使用者方便且快速執行相關預測。
Electricity expense is one of the fundamental tasks of property management. Activities, such as budget making and energy conservation programs, depend on the analysis on and estimate of electricity consumption. Most of the reference regarding the estimate of electricity consumption focuses more on the commercial and residential buildings than the other types of buildings. The traditional estimate method requires a large amount of historical data to construct the estimate model; also, it has to meet the correlation examine statistically. Therefore, the traditional estimate method has its limits.
In consideration of the periodicity of electricity consumption in educational institutions, this research focuses on the library of National Yunlin University of Science and Technology. Based on the collected historical records of monthly electricity consumption from 2004 to 2006, the monthly electricity consumption of 2007 is estimated by using the time series regression model in combination with the Fourier series model and the electricity consumption average method respectively. By comparing the estimate results to the real electricity consumption, the precision of different models can be identified.
This research uses sum of squares error (SSE) to determine the precision of models. The result indicates that Fourier series model (SSE=4.16×10^9) reaches a more precise estimate than the electricity consumption average method (SSE=5.15×10^9). Three data types (monthly electricity consumption during 2004-2006, 2006 and 2005-2006) are used to conduct the Fourier series estimate. The estimate based on the monthly electricity consumption during 2004-2006 is superior to the estimates based on the other two data types, which might resulted from a more accurate variation trend of electricity consumption reflected by historic data of a longer period. Also, the estimated optimized electricity consumption is used to calculate the floating electricity expense, which, compared with the real floating electricity expense, shows the error is 3.98%. The result could be a helpful reference for NYUST in budget making.
This research is based on the Fourier series model and a relatively small amount of data to estimate the electricity consumption. Further study is required to deal with the variation caused by the stochastic factors and limits caused by insufficient historical data. Also, the development of operating platforms, such as VB, is suggested to facilitate related estimate.
摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix

第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 5
1.3研究對象與範圍 5
1.4研究方法 6
1.5研究流程 7
1.6論文架構 9
第二章 文獻回顧 10
2.1預測定義與方法之整理 10
2.1.1預測之定義 10
2.1.2預測方法之分類 11
2.1.3預測方法簡介 12
2.2相關用電量預測文獻回顧 15
2.3傅立葉級數相關應用文獻 17
2.4結語 19
第三章 研究方法 20
3.1迴歸分析 20
3.1.1基本概念 20
3.1.2簡單迴歸 20
3.1.3迴歸的原理與特性 20
3.2傅立葉級數 23
3.2.1一般概念與定義 23
3.2.2傅立葉係數 25
3.2.3週期為任意值之函數 29
3.2.4其他形式之傅立葉級數 31
3.3結語 33
第四章 模型建構 34
4.1案例介紹 34
4.2雲科大圖書館用電情況 39
4.3預測模型之建立 40
4.4結語 47
第五章 預測結果 49
5.1迴歸模型結果 49
5.2傅立葉級數模型結果 50
5.3結果比較 60
5.4用電量計價 61
5.5結語 63
第六章 結論與建議 65
6.1結論 65
6.2建議 66
參考文獻 67
書籍

1.于宗先,1972,經濟預測,大中國圖書有限公司,台北。
2.方世杰,1988,市場預測方法一百種,書泉出版社,台北。
3.吳柏林,1995,時間數列分析導論,鼎泰文化出版社,台北。
4.鄧聚龍、郭洪,1996,灰預測原理與應用,全華科技圖書股份有限公司,台北。
5.木棉,2006,睡夢中學三角,天下遠見出版股份有限公司,台北。
6.林祐輔,2008,工程數學(三) - Fourier級數,鼎隆圖書股份有限公司,台中。

中文文獻

7.黃文騫,1984,應用曳力之傅立葉級數展開分析海域昇導管之非線性動力反應,國立台灣大學土木工程研究所,碩士論文,台北。
8.陳俊融,1987,樑振動區間之傅立葉級數解,國立中興大學土木工程研究所,碩士論文,台中。
9.吳菁菁,1993,類神經網路應用於短期用電量之預測,元智大學工業工程研究所,碩士論文,桃園內壢。
10.廖炳坤,1994,類神經在電力負載預測之運用,元智大學工業工程研究所,碩士論文,桃園內壢。
11.梁天旗,1995,電力系統負載預測之灰色系統模式,國立成功大學電機工程系,碩士論文,台南。
12.周海龍,1995,台北都會區生活用水量之預測─類神經網路之應用,國立中興大學資源管理研究所,碩士論文,台中。
13.史光榮、楊宏澤,1997,應用灰色系統建模方法餘電力系統年尖峰負載預測,國家科學委員會研究彙刊-自然科學與工程,pp. 445-453.
14.李榮泰,2000,住宅用電量簡易評估法之研究,國立成功大學建築學系,碩士論文,台南。
15.沈心怡,2001,台中市幼稚園電力消耗量之研究,逢甲大學建築及都市計畫研究所,碩士論文,台中。
16.李文興、黃建誠,2004,學校建築耗能調查與探討,節約能源技術報導,第54期,pp. 23-30.,台北。
17.洪炳煌,2003,學校省能用電最佳規劃,中原大學電機工程研究所,碩士論文,桃園中壢。
18.黃冠穎,2005,台灣地區降雨時序資料之小波分析,國立成功大學資源工程學系,碩士論文,台南。
19.葉百軒,2005,公立圖書館照明環境之評估研究-以台中市為例,逢甲大學建築學系碩士班,碩士論文,台中。
20.吳衍嘉,2005,大型圖書館建築之空調節能改善分析與全尺度實驗印證,國立中山大學機械與機電工程研究所,碩士論文,高雄。
21.賴嵐瑄,2006,都市商業區建築與街廓用電預測之研究,國立成功大學建築研究所,碩士論文,台南。
22.林東慶,2006,利用傅立葉轉換預測指南宮之地震動,國立中央大學土木工程研究所,碩士論文,桃園。
23.經濟部能源局,「政府機關學校耗能指標指導手冊」。(http://www.moeaec.gov.tw/),2006/07/18。
24.莊千卉,2007,選擇權市場上的振盪作用-傅立葉展開,輔仁大學數學研究所,碩士論文,台北。
25.台灣電力公司-電價表,(http://www.taipower.com.tw/),2008/07/26。
26.經濟部能源局,「能源統計年報-電力消費統計表」,(http://www.moeaec.gov.tw/),2008/01/08。

英文文獻

27.Chamber, J. C., Mullick, S. K., and Smith, D. D., 1971, “How to Choose the Right Forecasting Technique, ” Harvard Business Review, pp. 44-69.
28.Box, G. E. P., Jenkins,G. M. 1976, “Time Series Analysis Forecasting and Control,” Holden-Day, San Francisco.
29.Donlebell, O.J., 1977, “Selecting Environmental Forecasting form Business Planning Requirements,” Academy of Management Review, Vol. 19, No. 5, pp. 373-383.
30.Archer, B. H., 1980, “Forecasting Demand: Quantitative and Intuitive Techniques,” International Journal of Tourism Management, Vol. 1, No. 1, pp. 5-12.
31.Bernstein, G. L., 1984, “The Art of Using Forecasts Effectively,” Directors & Boards, Vol. 8, pp. 23-26.
32.Woolhiser, D. A., Wallace, D. E., 1984, “Mapping Average Daily Pan Evaporation,” Journal of Irrigation and Drainage Engineering, Vol. 110, No. 2, pp. 246-250.
33.Uysal, M., Crompton, J. L., 1985, “An Overview of Approaches Used to Forecast Tourism Demand,” Journal of Travel Research, Vol. 2, pp. 7-15.
34.Guptal, R. K., Chauhan, H. S., 1986, “Stochastic Model of Irrigation Requirements”, Journal of Irrigation and Drainage Engineering, Vol. 112, No. 1, pp. 65-76.
35.Spillers, W. R., Levy, R., 1990, “Optimal Design for Plate Buckling,” Journal of Structural Engineering, Vol. 116, No. 3, pp. 850-858.
36.Tamura, Y., Zhang, D., 1992, “Load Forecasting Using Grey Dynamic Model,” Journal of Grey System, Vol. 4, No. 1, pp. 49-58.
37.Chan, Y. M., 1993, “Forecasting Tourism: A Sine Wave Time Series Regression Approach,” Journal of Travel Research, Vol. 32, pp. 58-60.
38.Ramadan, O., Novak, M., 1993,“Simulation of Spatially Incoherent Random Ground Motions,” Journal of Engineering Mechanics, Vol. 119, No. 5, pp. 997-1016.
39.Tseng, S., Adams, B. M., 1994, “Monitoring Autocorrelated Process with An Exponentially Weighted Moving Average Forecast,” Journal of Statistical Computation and Simulation, Vol. 11, pp. 231-237.
40.Witt, S. F., Witt, C. A., 1995, “Forecasting Tourism Demand: A Review of Empirical Research”, International Journal of Forecasting, Vol. 11, pp. 447-475.
41.Wong, K., 1997, “The Relevance of Business Cycle in Forecasting International Tourist Arrivals,” Tourism Management, Vol. 18, No. 8, pp. 581-586.
42.Bellas-Velidis, I., Argiriou, A. A., Balaras, C., and Kontoyannidis, S., 1998, “Predicting Energy Demand Of Single Solar Houses Using Artificial Neural Networks,” Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, pp. 873-877, Germany: Aachen, Sep 7-10.
43.Chu, F. L., 1998, “Forecasting Tourism: A Combined Approach,” Tourism Management, Vol. 19, pp. 512-520.
44.Kanarachos, A., Geramanis, K., 1998, “Multivariable Control of Single Zone Hydronic Heating Systems with Neural Networks,” Energy Conversion and Management, Vol. 39, pp. 1317-1336.
45.Butala, V., Novak, P., 1999, “Energy Consumption and Potential Energy Savings in Old School Buildings,” Energy and Buildings, Vol. 29, pp. 241-246.
46.Argiriou, A.A., Bellas-Velidis, I., Balaras, C.A., 2000, “Development of A Neural nNetwork Heating Controller For Solar Buildings,” Neural Networks, Vol. 13, pp. 811-820.
47.Deng, S. M., Burnett, J., 2000, “A Study of Energy Performance of Hotel Buildings in Hong Kong,” Energy and Buildings, Vol. 31, pp. 7-12.
48.Tseng, F. M. H., Yu C., and Tzeng, G., H., 2001, “Applied Hybrid Grey Model to Forecast Seasonal Time Series,” Technological Forecasting and Social Change, Vol. 67, pp. 291-302.
49.Kawamoto, K., Koomey, J. G. , Nordman, B., Brown, R. E., Piette, M. A., Ting, M., and Meier, A. K., 2002, “Electricity Used by Office Equipment and Network Equipment in the US,” Energy, Vol. 27, pp. 255-269.
50.Wang, X.J., Lambert, M. F., Simpson, A. R., M., Liggett, J. A., and Vitkovskỳ, J. P., 2002, “Leak Detection in Pipelines Using the Damping of Fluid Transients,” Journal of Hydraulic Engineering, Vol. 130, No. 11, pp. 697-711.
51.Li, D. H.W., Wong, S.L., and Lam, J. C., 2003, “Climatic Effects on Cooling Load Determination in Subtropical Regions,” Energy Conversion and Management, Vol. 44, pp. 1831-1843.
52.Chao, H. W., 2004, “Predicting Tourism Demand Using Fuzzy Time Series and Hybrid Grey Theory,” Tourism Management, Vol. 25, pp. 367-374.
53.Lundin, M., Andersson, S., 2004, “Development and Validation of a Method Aimed at Estimating Building Performance Parameters,” Energy and Buildings, Vol. 36, pp. 905-914.
54.Singh, S. K., 2004, “Aquifer Response to Sinusoidal or Arbitrary Stage of Semipervious Stream,” Journal of Hydraulic Engineering, Vol. 128, No. 7, pp. 1108-1118.
55.Dong, B., Cao, C., Lee, S. E., 2005, “Applying Support Vector Machines to Predict Building Energy Consumption in Tropical Region,” Energy and Buildings, Vol. 37, pp. 545-553.
56.Mahlia, T. M. I., Said, M. F. M., Masjuki, H. H., Tamjis, M. R., 2005, “Cost-Benefit Analysis and Emission Reduction of Lighting Retrofits in Residential Sector,” Energy and Buildings, Vol. 37, pp. 573-578.
57.Casals, X. G., 2006, “Analysis of Building Energy Regulation and Certification in Europe: Their role, Limitations and Differences,” Energy and Buildings, Vol. 38, pp. 381-392.
58.Chung, W., Hui, Y.V., Lam Y. M., 2006, “Benchmarking the Energy Efficiency of Commercial Buildings,” Applied Energy, Vol. 83, pp. 1-14.
59.Morgan, S., Krarti, M., 2007, “Impact of Electricity Rate Structures on Energy Cost Savings of Pre-cooling Controls for Cffice Buildings,” Building and Environment, Vol. 42, pp. 2810-2818.
60.Seem, J. E., 2007, “Using Intelligent Data Analysis to Detect Abnormal Energy Consumption in Buildings,” Energy and Buildings, Vol. 39, pp. 52-58.
61.Corgnati, S. P. , Corrado, V., Filippi, M., 2008, “A Method for Heating Consumption Assessment in Existing Buildings: A Field Survey Concerning 120 Italian Schools,” Energy and Buildings, Vol. 40, pp. 801-809.
62.Hernandez, P., Burke, K., Lewis, J. O., 2008, “Development of Energy Performance Benchmarks and Building Energy Ratings for Non-domestic Buildings: An Example for Irish Primary Schools,” Energy and Buildings, Vol. 40 , pp. 249-254.
63.Lam, J. C., Wan, K. K. W., Cheung, K. L., Yang, L., 2008, “Principal Component Analysis of Electricity Use in Office Buildings,” Energy and Buildings, Vol. 40, pp. 828-836.
64.Lee, W. S., 2008, “Benchmarking the Energy Efficiency of Government Buildings with Data Envelopment Analysis,” Energy and Buildings, Vol. 40, pp. 891-895.
65.Madeja, R., Moujaes, S., 2008, “Comparison of Simulation and Experimental Data of a Zero Energy Home in an Arid Climate,” Journal of Energy Engineering, Vol. 134, No. 3, pp. 102-108.
66.Vazquez-Amabile, G. G., Engel, B. A., 2008, “Fitting of Time Series Models to Forecast Streamflow and Groundwater Using Simulated Data from SWAT,” Journal of Hydrologic Engineering, Vol. 13, No. 7. pp. 42-51.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊