跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高文淵
研究生(外文):Wen-yuan Kao
論文名稱:雙相複合材料的熱膨脹係數之預測
論文名稱(外文):The Prediction on the Coefficient of Thermal Expansion of Two-Phase Composite Materials
指導教授:蘇啟宗
指導教授(外文):Chih-Tsong Su
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:72
中文關鍵詞:熱膨脹係數雙相複合材料介質理論
外文關鍵詞:Coefficient of Thermal ExpansionTwo-phase compositesInclusion method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的,是以複合材料力學之理論得到一雙相複合材料之熱膨脹係數。且利用橢球體介質理論公式之雙相複合材料的熱膨脹係數值,再經由文獻實驗之兩個案研究的結果來作比較;其中個案研究(一)以樹脂為基材,纖維為介質;引用本論文之理論公式預估梭織物複合材料之各種不同的介質含量之熱膨脹係數,並與介質理論公式以及文獻實驗結果之熱膨脹係數比較。個案研究(二)則以砂漿為基材,骨材為介質;亦引用本論文之理論預測其熱膨脹係數,亦與介質理論公式以及文獻實驗結果之熱膨脹係數比較;預測混凝土複合材料之各種不同的介質含量之熱膨脹係數。由理論公式與文獻實驗結果得知,本文兩個研究個案分別為纖維與骨材等兩種介質為橫等向性材料排列來預測梭織物複合材料與混凝土複合材料之熱膨脹係數與文獻實驗值甚為接近。
This research main purpose is obtains of thermal-expansion coefficient a two-phase compound materials theory of by the compound materials theory of by the compound materials mechanics And double-phase of compound materials'' using the ellipse spheroid medium theoretical formula heat expansion coefficient value, case study''s result makes the comparison again by way of literature experiment second. And the case study (1) take the resin as a parent metal, the textile fiber is a medium; Of theoretical formula estimate shuttle fabric compound materials quotation present paper of thermal-expansion coefficient each different medium content. And compares of thermal-expansion coefficient with the medium of theoretical formula as well as the literature experimental result. The case study (2) piece take the mortar as a parent metal, the bone material is a medium. Also theory of the quotation present paper forecasts its thermal-expansion coefficient. Also compares of thermal-expansion coefficient with the medium of theoretical formula as well as the literature experimental result.The prediction on the concretes compound materials of thermal-expansion coefficient each different medium content. By theoretical formula and literature experimental result knowing. Of this article two research cases respectively be the textile fiber and the bone material and so on two medium for the horizontal isotropism material arrangement forecast that of thermal-expansion coefficient and the literature actual value the shuttle fabric compound materials and the concretes compound materials are close really.
摘要 I
ABSTRACT II
誌謝 Ⅳ
圖目錄 VII
表目錄 VIII
符號說明 IX
第1章 緒論 11
1.1 研究動機及其應用 11
1.2 研究目的 11
1.3 研究方法 12
1.4 研究步驟 12
第2章 文獻探討 14
2.1 前言 14
2.2 文獻回顧 14
第3章 介質理論 16
3.1 前言 16
3.1.1 Eshelby 的等值轉換原則 17
3.1.2 Mori-Tanaka平均應力法 20
3.2 等向性材料(Isotropic Media ) 22
3.3 立方晶體材料(Cubic Anisotropic Media) 23
3.4 橫等向性材料應力與應變 24
第4章 複合材料及力學理論 26
4.1 前言 26
4.2 複合材料的組成成份 26
4.3 複合材料的力學構成 27
4.3.1 虎克彈性固體 27
4.3.2 混合律 (Law of Mixture) 31
4.4 雙相複合材料之熱膨脹係數公式 32
第5章 文獻實驗之結果與討論 34
5.1 個案研究(一) 34
5.1.1 梭織物簡介 .34
5.1.2 文獻實驗結果與討論~樹脂基複合材料 35
5.1.3 個案研究(一)之結果與討論 42
5.2 個案研究(二) 43
5.2.1 簡介 43
5.2.2 文獻實驗結果與討論~~~砂漿基複材 44
5.2.3 實驗個案研究(二)之結果與討論 45
第6章 理論分析與實驗結果的比較 46
6.1 樹脂基之分析與結果 46
6.1.1 本文之理論公式計算 46
6.1.2 介質理論公式之分析與結果 47
6.1.3 樹脂基複合材料之理論分析與實驗結果 49
6.2 砂漿基之分析與結果 51
6.2.1 本文之理論公式計算 51
6.2.2 介質理論公式之分析與結果 52
6.2.3 砂漿基之理論分析與實驗結果 52
6.3 理論分析與文獻實驗結果比較 55
第7章 結論與建議 58
7.1 結論 58
7.2 建議 59
參考文獻 60
附錄 65
[1] Hull Derek, “An Introductionto Composite Materials,” Cambridge
University Press 1981.
[2] David E. Bowles, Stephen S. Tompkins, “Prediction of Coefficients of Thermal
Expansion for Unidirectional Composites,” J. Comp. Mater., 23(1989)370-388.
[3] E. Sideridis, “Thermal Expansion Coefficient of Fiber Composites Defined by The
Concept of the Interphase,” Com. Sci. Technol., 51(1994)301-317.
[4] MD. R. Islam, S. G. Sjolind1 . A. Pramila, “Finite Element Analysis of Linear
Thermal Expansion Coefficients of Unidirectional Cracked Composites,” J. Comp.
Mater., 35(2001)1762-1776.
[5] G. Korb,J Korab and G. Groboth.“Thermal Expansion Behaviour of Unidirectional
Carbon-Fibre-Reinforced Copper-Matrix Composites,” Composites Part A, 29A
(1998), 1563-1567.
[6] A. Agbossou and J. Pastor.“Thermal Stress and Thermal Expansion Coefficients of
n-Layered Fiber-Reinforced Composites,” Composites Science and Technology, 57
(1997), 249-260.
[7] Ran Y. Kim, Allan S. Crasto, Gregory A. Schoeppner.“Dimensional Stability of
Composite in a Space Thermal Environment,” Composites Science and Technology,
60 (2000), 2601-2608.
[8] Giulio Romeo and Giacomo Frulla.“Analytical and Experimental Results of the
Coefficient of Thermal Expansion of High-Modulus Graphite-Epoxy Materials,”
Journal of Composite Materials, 29, 6(1995), 751-765.
[9] 張誌輝,“預測梭織物複合材料之熱膨脹係數”,逢甲大學紡織工程研究所碩
士論文,2002年06月
[10] 詹翔麟,“梭織物複合材料熱膨脹係數之研究”,逢甲大學紡織工程研究所碩
士論文,2003年06月
[11] 張子明、張研、宋智通等,“基于細觀力學方法的混凝土熱膨脹係數預
測 ”,計算力學學報,第24卷第6期,2007年12月,P.807~P.810.
[12] J. Kora’ba, P. Stefanika, S. Kaveckya, P. Seboa, G. Korbb,“Thermal Expansion
of Cross-ply and Woven Carbon Fibre-Copper Matrix Composites, ” Composites
Part A 33 (2002) 133-136.
[13] Chen Zuoronga, Yu Shouwena, Feng Xiqiaoa, Meng Lub, Lin Yeb,“Evaluation of
Thermo-Elastic Properties of Three-Dimensional Orthogonal Woven Composites
,”Composites Part B 33 (2002) 241-251.
[14] I. Glavchev , Kr. Petrova, M. Ivanova,“Determination of the Coefficient of
Thermal Expansion of Epoxy Composites,” Polymer Testing 21 (2002) 177-179.
[15] Ran Y. Kima, Allan S. Crastoa, Gregory A. Schoeppnerb,“Dimensional Stability
of Composite in a Space Thermal Environment,” Composites Science and
Technology 60 (2000) 2601-2608.
[16] Weng, G. J., 1984 , “Some Elastic Properties of Reinforced Solid,with Special
Reference to Isotropic Ones Containing Spherical Inclusions”, Int. J. Engng Sci.,
Vol.22, No.7, pp.845~856.
[17] Mori-T. and Tanaka,K.,1973, “Average Stress in the Matrix and Average Elatic
Energy of Materials with Misfitting”, Acta Metal, Vol.21, pp.571~574.
[18] Hashin, Z. and Shtrikman, S., 1963, “A Variational Approach to the Theory of
the Elastic Behavior of Multiphase Materials”, J. Mech. Phrs. Solids.25.
[19] Tandon, G.P. and Weng, G. J., 1986, “Average Stress in Matrix and Effective
Moduli of Randomly Oriented Composites”, Composites Science and Technology,
Vol. 27, pp.111-132 .
[20] 蔡偉隆,2005,“介質理論模擬水泥基複合材料長齡期應力-應變行為”,
國立高雄應用科技大學土木工程與防災科技研究所碩士論文
[21] 藤井太一、座古勝著,劉松柏博士譯,“複合材料的破壞與力學”,五南圖
書出版公司
[22] Eshelby, J. D., 1957, “The Determination of Elastic Field of an Ellipsoidal
Inclusion, and Relation Problem”, Proceedings of the Royal Society, London,
Vol. A241, pp. 376-396.
[23] Mori-T. and Tanaka,K.,1973, “Average Stress in the Matrix and Average Elastic
Energy of Materials with Misfit ting”, Acta Metal,vol.21,pp.571~574.
[24] H. H. Pan and G. J. Weng , 1992,“ Thermal Stress And Volume Change During a
Cooling Process Involving Phase Transformation. ”, Journal of Thermal
Stress,15;pp.1-23,1992.
[25] H. H. Pan and G. J. Weng , 1993, “ Thermal Stress Relief by Plastic Deformation
in Aligned Two-Phase Composites.”Engineering, Vol. 3,No3,pp.219-234.
[26] R.M.Chrisyensen, “Mechanics of Composites Materials”,pp.73~89
[27] Y.d G.J.Weng ,1990, “On the Application of Mori-Tanaka’s Theory
Involving Transversely Isotropic Spheroid Inclusions. ”,Int.J.Engng Sci.Vol.28,
No.11,pp.1121~1137,1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top