跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳銘賢
研究生(外文):Ming-Hsian Chen
論文名稱:轉子系統空間分佈之軸偏心參數估計
論文名稱(外文):Estimation of Space-Distributed Parameters of the Shaft in Rotor Systems
指導教授:陳俊宏陳俊宏引用關係
指導教授(外文):Juhn-Horng Chen
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:轉子系統傳遞矩陣參數估計
外文關鍵詞:rotor systemtransfer matrix methodsestimation of parameters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本篇論文利用廣義傳遞矩陣法(GTMM)結合Timoshenko樑理論,探討轉子系統於三度空間偏心分佈,分別推導出撓性軸、剛性圓盤及線性軸承之運動方程式,進而求得撓性軸、剛性圓盤與線性軸承之傳遞矩陣,再將撓性軸、剛性圓盤與線性軸承之傳遞矩陣組合成系統的傳遞矩陣。利用轉子系統之狀態變數,包括位移及角度,在兩相近轉速條件下,針對撓性軸及圓盤作偏心參數估計。論文內容包含了理論推導與電腦數值模擬等部分。

This research uses a general transfer matrix method (GTMM) and Timoshenko Principle for estimating the spatial unbalance parameters in rotor systems. Firstly we derive the motion equation of the flexible shaft, disks, and bearings. Through assembling the transfer matrices of the flexible shaft, disks, and bearings, we can obtain the global transfer matrix of the rotor system. The state variables of the transfer matrix include lateral deflections, deflection angles caused by shears and bending moments respectively, shears, bending moments, torque, and torsional angle. The spatial unbalance parameters of flexible shafts, and disk eccentricities, can be estimated at two closely rotating speeds. The theoretical development of the proposed method is presented with simulation results and discussion.

中文摘要……………………………………………………………………Ⅰ
英文摘要……………………………………………………………………Ⅱ
致謝…………………………………………………………………………Ⅲ
目錄…………………………………………………………………………Ⅳ
表目錄………………………………………………………………………Ⅵ
圖目錄………………………………………………………………………Ⅶ
符號說明……………………………………………………………………Ⅷ
第一章簡介 …………………………………………………………………1
1.1論文研究動機………………………………………………………1
1.2文獻回顧 …………………………………………………………2
1.3研究方法與論文編制………………………………………………5
第二章轉子系統傳遞矩陣之建立 …………………………………………6
2.1撓性軸傳遞矩陣之建立……………………………………………6
2.2剛性圓盤傳遞矩陣之建立 ………………………………………15
2.3線性軸承傳遞矩陣之建立 ………………………………………16
2.4轉子系統傳遞矩陣之組合程序 …………………………………17
第三章廣義傳遞矩陣法於軸及圓盤之偏心估計 ………………………19
3.1撓性軸偏心估計理論之模型建立 ………………………………19
3.2剛性圓盤偏心估計理論之模型建立 ……………………………25
3.3轉子系統偏心參數估計之程序 …………………………………26
3.4電腦數值模擬 ……………………………………………………31
第四章結論…………………………………………………………………33
參考文獻……………………………………………………………………35
附錄 A………………………………………………………………………38
附錄 B………………………………………………………………………39
附錄 C………………………………………………………………………40

參考文獻
1. Prohl, M. A., 1945, “ A General Method for Calculating Critical Speeds of Flexible Rotors, ” ASME Journal of Applied Mechanics, Vol. 67, pp. 142-148.
2. Hagg, A. C., and Sankey, G. O., 1956, “ Some Dynamic Properties of Oil-Film Journal Bearings with Reference to the Unbalance Vibration of Rotors, ” ASME Journal of Applied Mechanics, Vol. 78, pp. 302-306.
3. Sternlicht, B., 1959, “ Elastic and Damping Properties of Cylindrical Journal Bearings, ” ASME Journal of Basic Engineering, Vol. 81, pp. 101-108.
4. Koening, E. C., 1961, “ Analysis for Calculating Lateral Vibration Characteristics of Rotating Systems with Any Number of Flexible Supports, Part 1 - The Method of Analysis, ” ASME Journal of Applied Mechanics, Vol. 28, pp.585-590.
5. Guenther, T. G., and Lovjoy, D.C., 1961, “ Analysis for Calculating Lateral Vibration Characteristics of Rotating Systems with Any Number of Flexible Supports, Part 2 - Application of the Method of Analysis, ” ASME Journal of Applied Mechanics, Vol.28, pp.591-600.
6. Lund, J. W., and Orcutt, F. K., 1967, “ Calculations and Experiments on the Unbalance Response of a Flexible Rotor, ” ASME Journal of Engineering for Industry, Vol. 89, No.4, pp. 785-796.
7. Willems, N., and Holzer, S. M., 1967, “ Critical Speed of Rotating Shaft Subjected to Axial Loading and Tangential Torsion, ” ASME Journal of Engineering for Industry, pp. 259-264.
8. Lund, J. W., 1974, “ Modal Response of a Flexible Rotor in Fluid-Film Bearings, ” ASME Journal of Engineering for Industry, Vol. 96, pp. 525-533.
9. Bansal, P. N., and Kirk, R. G., 1975, “ Stability and Damped Critical Speeds of Rotor-Bearing Systems, ” ASME Journal of Engineering for Industry, Vol. 97, pp. 1325-1332.
10. Nelson, H. D., and McVaugh, J. M., 1976, “ The Dynamics of Rotor-Bearing System Using Finite Element, ” Journal of Engineering for Industry, Vol. 93, No. 2, pp. 593-600.
11. Burrows, C. R., and Stanway, R., 1977, “ Identification of Journal Bearing Characteristics, ” ASME Journal of Dynamic System, Measur-ement, and Control, Vol. 99, pp. 167-173.
12. Lund, J. W., 1980, “ Sensitivity of the Critical Speeds of a Rotor to Changes in Design, ” ASME Journal of Mechanical Design, Vol. 102, pp. 115-121.
13. Gu, J., 1986, “ An Improved Transfer Matrix-Direct Integration Method for Rotor Dynamics, ” ASME Journal of Vibration Acoustics, Stress, and Reliability in Design, Vol. 108, pp. 183-188.
14. Lee, A. C., Shih Y. P., and Kang, Y., 1993, “ The Analysis of Linear Rotor-Bearing Systems - A General Transfer Matrix Method, ” ASME Journal of Vibration and Acoustics, Vol. 115, pp. 490-497.
15. Kang, Y, Lee, A. C, and Shih, Y. P., 1994, “ A Modified Transfer Matrix Method for Asymmetric Rotor-Bearing Systems, ” ASEM Journal of Vibration and Acoustics, Vol. 116, No. 3, pp. 309-317.
16. Raffa, F. A., and Vatta, F., 1996, “ The Dynamic Stiffness Method for Linear Rotor-Bearing System, ” ASME of Vibration and Acoustics, Vol. 118, Jul, pp. 332-339.
17. Huang, Y. M., and Horng, C. D., 1999, “ Analysis of Torsional Vibration Systems by the Extended Transfer Matrix Method, ” ASME Journal of Vibration and Acoustics, Vol.121, pp. 250-255.
18. Wang, C. M., 2001, “ Combined Methodology for Analysis of Rotary Systems, ” ASME of Vibration and Acoustics, Vol. 123, pp. 428 -434.
19. Burrows, C. R., and Sahinkaya, M. N., 1982, “ Frequency Domain Estimation of Linearized Oil-Film Coefficients, ” ASME Journal of Lubrication Technology, Vol. 104, pp. 210-215.
20. Muszynska,A., 1986, “ Modal Test of Rotor/Bearing Systems, ” International Journal of Analytical and Experimental Modal Analysis, Vol. 1, No. 3, pp. 15-34.
21. Shiau, T. N., and Hwang, J L., 1989, “ A New Approach to the Dynamic Characteristic of Undamped Rotor Bearing System, ” ASME Journal of Vibration Acoustics, Stress, and Reliability in Design, Vol. 111, pp. 379-385.
22. Kim, S. I. and Kwak, B. M., 1990, “ Identification of Bearing Coefficients by Incomplete Mode Shapes, ” Mechanical System and Signal Processing, Vol. 4, No. 5, pp. 425-433.
23. Chen, J. H., and Lee, A. C., 1995, “ Estimation of Linearized Dynamic Characteristics of Bearing Using Synchronous Response, ” International Journal of Mechanical Science, Vol. 37, pp. 197-219.
24. Chen, J. H., and Lee, A. C., 1997, “ Identification of Linearized Dynamic Characteristics of Rolling Element Bearings, ” ASME Journal of Vibration and Acoustics, Vol. 119, pp. 60-69.
25. Shih, Y. P., and Lee, A. C., 1996, “ Identification of the Unbalance Distribution in Flexible Rotors, ” International Journal of Mechanical Science, Vol. 39, No. 7, pp. 841-857.
26. Flowers, G. T., 1996, “ Modelling of an Elastic Disk With Finite Hub Motions And Small Elastic Vibrations With Application to Rotor dynamics, ” ASME of Vibration and Acoustics, Vol. 118, pp. 10 -15.
27 呂志男, 2002., “ 轉子系統的偏心參數估計, ” 中華大學碩士論文.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top