跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲維
研究生(外文):C.W.Chang
論文名稱:量子點分子中量子資訊存取之研究
論文名稱(外文):Study of Control Input/Output Schemes for Qubit in Quantum-Dot-Molecule Registers
指導教授:洪冠明洪冠明引用關係
指導教授(外文):K.M.Hung
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:34
中文關鍵詞:量子點分子量子資訊量子暫存器
外文關鍵詞:QubitQuantum-Dot-Molecule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文是研究InGaAs/GaAs量子點分子於外加電場下之光學特性,利用該特性以外加電場操控分子態的排列,進而改變所表達的資訊,而達到量子資訊寫入目的。利用激子耦合光子與縱向光聲子,激子藉由縱向光聲子的吸收與放射,於基態與激發態之間來回振盪的特性。運用運動方程理論解析,得知基態與激發態之間的拉比振盪與激子起始分佈的關連。以該特性為基礎,藉由量測拉比振盪的特性而得到激子的分佈,進而達到量子資訊讀取的目的。此外,電場控制下激子躍遷率的劇烈變化的特性,亦提供場控制光放大倍率之光放大器,與場控制單光子源之應用。
This work presents the theory of exciton coupling to photons and LO phonons in quantum-dot molecules (QDMs). Resonant-round trips of the exciton between the ground (bright) and excited (dark or bright) states, mediated by the LO-phonon, alter the decay time and yield the Rabi oscillation. Novel schemes for a qubit reading/writing in an exciton-based quantum-dot-molecule (QDM) register are proposed. A bit of quantum information is coded into the superposition (molecule) states of the QDM, based on field-controllable combinations of these states. Population-dependent Rabi oscillation in QDMs provides a detectable signature for readout of quantum information that is stored in the register. Moreover, the field-convertibly optical transition rate of the molecule states promises the QDM system to be a field-controlled optical-gain switch or a field-controlled single-photon source.
摘 要 I
Abstract II
誌 謝 IV
目錄 VI
圖目錄 VII
第一章 緒論 1
1-1研究背景 1
1-2量子電腦 2
1-3量子計算與量子位元 4
1-4研究動機 8
第二章 量子資訊的寫入 10
2-1 基本架構 10
2-2 量子點分子中分子態的探討與量子資訊的寫入 15
第三章 量子資訊的讀取 21
3-1 運動方程理論(Theory of Equation of Motion) 21
3-2 漢彌頓量與運動方程的計算 22
3-3 量子資訊的讀取 30
第四章 結論 33
參考文獻 34
1.Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423-429, (2004).
2.Condon A. Automata make antisense. Nature 429, 351-352, (2004).
3.P.W. Shor. Algorithms for quantum computation: discrete logarithm and factoring. Proceedings of the 35th Annual Symposium on the Foundations of Computer. Science, 124-134, (1994).
4.P. Benioff. Journal of Statistical Physics 22:563-591, 1980
5.R. Feynman, “Simulating physics with computers", Journal of Theoretical Physics 22, 467-488, (1980)
6.D. Deutsch, “ Quantum Theory, the Church-Turing principle, and the universal quantum computer", Proc. Royal Society London, Series A: 100 vol.400, 97-117, (1985)
7.L.M.K Vandersypen, M. Steffen, M.H. Sherwood, C.S. Yannoni, G. Breyta, and I.L. Chuang, Implementation of a three-quantum-bit search algorithm, arXive e-Print quant-ph/9910075v2, (1999).
8.L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, R. Cleve, and I.L. Chuang, Experimental realization of order-finding with quantum computer, arXive e-print quant-ph/0007017v2, (2000)
9.Vandersypen et al.,Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414, 883–887 (2001).
10.Ion trap in a semiconductor chip, Nature Physics 2, 36-39 (2006)
11.G. Werth, Contemp. Phys. 26, 241 (1985).
12.M.A. Nielsen and I.L. Chuang , “Quantum Computation and Quanttum Information”, Cambridge University Press (2000).
13.D. Bouwmeester, A. Ekert, and A. Zeilinger, “The Physics of Quantum Information”,Springer-Verlag Berlin (2000)
14.A. Galindo and M. A. Martin-Delgado, Information and computation: classical and quantum aspects, Review of Modern Physics 74, 347 (2002).
15.E. Knill, R. Laflamme and G. Milburn, Nature409, 46 (2001).
16.G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park and L. J. Sham, Science 289, 1906 (2000).
17.M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern and A. Forchel, Science 291, 451 (2001).
18.P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).
19.C. Bardot, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, and P. Hawrylak, Phys. Rev. B72, 035314-1 (2005).
20.G. Ortner, R. Oulton, H. Kurtze, M. Schwab, D. R. Yakovlev, M. Bayer, S. Fafard, Z. Wasilewski, and P. Hawrylak, Phys. Rev. B71, 125335-1 (2005).
21.R. Heitz et al.,Phys. Rev. Lett. 83,4654(1999)
22.E. Merzbacher, Quantum Mechanics (John Wiley & Sons, N. Y. 1970)
23.K.-M. Hung, J. Appl. Phys. 102, 023111 (2007)
24.S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, and G. Bastard, Phys. Rev. Lett. 83, 4152 (1999),
25.K.-M. Hung and C.-S. Chen, Solid State Commun. 140, 369 (2007).
26.C. Kittel, Quantum Theory of Solids (John Wiley & Sons, N. Y. 1963)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top