跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴秀全
研究生(外文):Hsiu-Chun Lai
論文名稱:應用在802.11a及WIMAX/UWB之低雜訊放大器晶片設計
論文名稱(外文):Chip Design of LNAs for 802.11a and WIMAX/UWB Applications
指導教授:林志明林志明引用關係
指導教授(外文):Zhi-Ming Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:積體電路設計研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:50
中文關鍵詞:電流重複使用低雜訊放大器
外文關鍵詞:WIMAXUWBLNA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用台積電的0.18微米1P6M CMOS製程設計應用於超寬頻系統前端電路中之功率放大器與低雜訊放大器。第一顆晶片是用於2到11GhZ低雜訊放大器設計與分析,這顆LNA可以使用在2到11GhZ WIMAX和3.1到11.6GhZ UWB系統上而採用的方法為電流重複使用架構和負回授架構. 模擬結果顯示此一低雜訊放大器在2GHz到11GHz 頻率下有12.46dB的最高功率增益(S21),總消耗功率為7.52mW而雜訊指數為2.36到3.97 dB。
第二顆晶片中,我們利用電流重複使用技術為基本架構來設計一個5.7GhZ低雜訊放大器,許多文獻採用柴比雪夫帶通濾波器來當作輸入端的阻抗匹配,在本電路設計中為了達到較低的雜訊指數,我們採用一個簡單的高通濾波器來當作輸入匹配網路,不僅得到較低的雜訊指數並且對於面積也有節省。模擬結果顯示此放大器在5.7GHz 頻率下得到最高20.7dB的增益,S11與S22小於-10dB,最低雜訊指數為3.08dB,總消耗功率為17.2mW。
This thesis presents the design of a 2-11GhZ low noise amplifier (LNA) and a 5.7GHz gain-variable low noise amplifier fabricated in TSMC 0.18μm 1P6M RF/Mixer-signal CMOS process. First, we propose an 2-11GhZ low noise amplifier. This LNA has illustrated fully integrated dual-band LNA that can cover 2-11GHz and 3.1-10.6GHz for WiMAX and UWB receiver. By employing the current-reused configuration with a negative feedback, the proposed LNA provided a peak power gain of 12.46 dB and a good input matching under a power dissipation of 7.52 mW. The NF is ranged from 2.36 to 3.97 dB within the bandwidth.
In the second chip design, we adopt a current-reused technique to design an 5.7 GHz CMOS gain-variable low noise amplifier. There are many LNAs using Chebyshev bandpass filter to achieve wide band matching. We use a simple high pass filter for low noise consideration. Smaller noise figure and chip size is simultaneously attained. Simulation results show that LNA has a maximum 20.7dB power gain. The simulated S11 and S22 are all below -10dB and the minimum noise figure is 3.08dB. The total power consumption with output buffer is 17.2mW.
TABLE OF CONTENTS

摘要 ……………………………i
ABSTRACT ………………………ii
誌謝…………………iii
TABLE OF CONTENTS ………………………iv
LIST OF FIGURES ………………………vi
LIST OF TABLES ………………………viii

CHAPTER 1 Introduction …………………1
1.1 WIMAX Specifications ………………………1
1.2 UWB Specifications ………………………4
1.3 IEEE802.11a Specifications …………4
1.4 Motivation ……………………………5
1.5 Organization of the Thesis ………………6
CHAPTER 2 Basic RF Fundamentals ………………… 7
2.1 Basic RF Concepts ………………… 7
2.2 S Parameters …………………………7
2.3 Power Gain …………………………8
2.3.1 Transducer power gain ……………………9
2.3.2 Available power gain ………………………9
2.3.3 Operation power gain …………………10
2.4 Stability ……………………………10
2.5 Noise and Noise Models ……………11
2.6 Noise Figure …………………………13
2.7 Linearity …………………14
2.7.1 Harmonic distortion ……………………14
2.7.2 Intermodulation distortion (IMD) ……………15
2.7.3 Gain Compression (P1dB) …………………15
2.7.4 Third order intercept point (IIP3 and OIP3) ……17
2.8 Analysis of LNAs ………………………19
CHAPTER 3 WiMAX / UWB Low Noise Amplifier …………23
3.1 Circuit Design of WiMAX/UWB LNA ………………24
3.2 Layout ………………………27
3.3 Simulation Results ………………28
CHAPTER 4 5.7GHz Low Noise Amplifier …………33
4.1 Circuit Topology and Design Concepts …………35
4.1.1 Current-reused technique …………………36
4.1.2 Input stage …………………36
4.1.3 Output stage …………………37
4.1.4 Gain-Variable Block ……………………38
4.2 Layout ………………………39
4.3 Simulation Results ……………………40
CHAPTER 5 Conclusions ……………………46
REFERENCES …………………………… 47

LIST OF FIGURES

Figure 1.1 The frequency band in a UWB system ……4
Figure 1.2 IEEE 802.11a standard within the UMII band…5
Figure 2.1 Port variable definitions of S-parameter……8
Figure 2.2 Block diagram of RF amplifier circuit depicting different power gain …………9
Figure 2.3 A general nonlinear device or network …14
Figure 2.4 Two signals at frequencies f1 and f2
and their intermodulation products …………15
Figure 2.5 Definition of 1dB compression point ………17
Figure 2.6 Definition of the third order intercept point ……………18
Figure 2.7 Common source …………20
Figure 2.8 Common gate …………20
Figure 2.9 Distributed amplifier ………………21
Figure 2.10 Resistive shunt feedback ……………21
Figure 2.11 Cascade amplifier …………22
Figure 2.12 Current–reused amplifier………………………22
Figure 3.1 Schematic of the designed WiMAX/UWB LNA…26
Figure 3.2 Layout diagram of the WiMAX/UWB LNA…………27
Figure 3.3 Simulated input return loss of the WiMAX/UWB LNA …………………28
Figure 3.4 Simulated output return loss of the WiMAX/UWB LNA …………………29
Figure 3.5 Simulated S12 of the WiMAX/UWB LNA……………29
Figure 3.6 Simulated S21 of the WiMAX/UWB LNA……………30
Figure 3.7 Simulated noise figure of the WiMAX/UWB LNA ……30
Figure 3.8 Simulated IIP3 of the WiMAX/UWB LNA…………31
Figure 3.9 Simulated P1dB of the WiMAX/UWB LNA…………31
Figure 3.10 Simulated μ factor of the WiMAX/UWB LNA…32
Figure 4.1 Proposed LNA with current-reused technique …………………………35
Figure 4.2 Matching network of the input stage ……………………37
Figure 4.3 Simulated power gain of the proposed 5.7GHz LNA…………………………………………………………………………………38
Figure 4.4 Simulated noise figure of the proposed 5.7GHz LNA ………………………39
Figure 4.5 The chip layout of the 5.7GHz LNA…………38
Figure 4.6 Simulated S11 of the 5.7GHz LNA………………41
Figure 4.7 Simulated S22 of the 5.7GHz LNA………………41
Figure 4.8 Simulated S12 of the 5.7GHz LNA………………42
Figure 4.9 Simulated S21 of the 5.7GHz LNA………………42
Figure 4.10 Simulated noise figure of the 5.7GHz LNA…43
Figure 4.11 Simulated P1dB of the 5.7GHz LNA……………43
Figure 4.12 Simulated IIP3 of the 5.7GHz LNA……………44
Figure 4.13 Simulated μ factor of the 5.7GHz LNA………44

LIST OF TABLES

Table 1.1 IEEE 802.16 series………………………………………3
Table 3.1 Specifications of the WiMAX/UWB LNA……………24
Table 3.2 Performance Comparison of the WiMAX/UWB LNAs …………………32
Table 4.1 Specifications of the 5.7GHz LNA Performance ……………34
Table 4.2 Performance Comparison of of 5.7GHz LNAs…45
References

[1] http://www.ieee802.org/16/docs/02/C80216-02_05.pdf.
[2] L. S. Ma and D. Y. Jia, “The Competition and Cooperation of WiMAX,
WLAN And 3G,” in proc. 2005 Intl. Conf. on Mobile Technology, Applications and Systems, Nov. 2005, pp. 1–5.
[3] B. Klepser, M. Punzenberger, T. Ruhlicke, and M. Zannoth, “5-GHz and 2.4-GHz dual-band RF-transceiver for WLAN 802.11a/b/g applications” 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003, pp. 37–40.
[4] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridgee, 2004.
[5] Kai Chang, Inder Bahl, Vijay Nair, RF and Microwave Circuit and Component Design for Wireless systems, John Wiley & Sins, 2002.
[6] Guillermo Gonzalesz, Microwave Transistor Amplifier Analysis and Design, Prentice-Hall, Inc. Upper Saddle River, 1997.
[7] David Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
[8] B. Razavi, RF Microelectronics, Prentice Hall, Upper Saddle River, 1998.
[9] Behzad Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[10] D. M. Pozar, Microwave and RF Design of Wireless System, John Wiley& Sons, 2001.
[11] http://www.ieee802.org/15/pub/TG3a.html, IEEE802 Task Group 3a(TG3a) of P802.15.3.
[12] B. J. Farahani and M. Ismail,“Adaptive sigma delta ADC for WiMAX fixed point wireless applications,” Circuits and Systems. 48th Midwest Symposium on, Aug. 2005, pp. 692–695.
[13] Dake Wu, Ru Huang, Waisum Wong and Yangyuan Wang, “A 0.4-V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application,” IEEE Microwave and Wireless Components Letters, pp. 543– 545, July 2007.
[14] Yueh-Hua Yu and Yi-Jan Emery Chen, “A 0.6-V Low Power UWB CMOS LNA, ” in Proc Microwave and Wireless Components Letters, pp. 229–231, March 2007.
[15] Shih-Chih Chen, Ruey-Lue Wang, Ming-Lung Kung and Hen-Cho Hung, “AnIntegrated CMOS Low Noise Amplifier for Ultra Wide Band Applications,” in Proc IEEE Wireless Networks Communication Mobile Computing, pp. 1354–1357, June 2005.
[16] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” in Proc IEEE ISSCC Dig, pp. 382–383, 2004.
[17] Y. J. Lin, S. H. Hsu, J. D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz Ultra Wideband CMOS Amplifier with Current-Reused Technique,” in Proc IEEE Microwave and wireless component letters, pp. 232–234, March 2007.
[18] P. Ryan “A single chip PHY COFDM modem for IEEE 802.11a with integrated ADC’s and DACs,” in ISSCC Dig, pp. 338–339, Feb. 2001.
[19] Kuo-Hua Cheng and C.F. Jou “A novel 2.4GHz LNA with digital gain control using 0.18/splmu/mCMOS,” in Proc. of 2005 Midwest Symposium, pp. 1330–1333, 2005.
[20] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” IEEE J. Solid-State circuit, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[21] M. K. Raij , T. K. Kumar, and S.- J. Wong, “A fully integrated variable gain 5.75 GHz LNA with on chip active balun for WLAN,” IEEE RFIC Symp, pp. 439–442, June 2003.
[22] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[23] Vishwakarma Sumit, Sungyong Jung, and Youngjoong Joo, “Ultra wideband CMOS low noise amplifier with active input matching,” Ultra Wideband systems Joint Conference, pp. 415–419, 2004.
[24] Sajay Jose, H. J. Lee, and Dong Ha, “A low-power CMOS power amplifier for ultra wideband (UWB) applications,” IEEE circuit and systems Symposium, vol. 5, pp. 5111–5114, 2005.
[25] Chao Lu, Anh-Vu Pham, and Michael Shaw, “A CMOS power amplifier for full-band UWB transmitters,” IEEE Radio Frequency Integrated Circuits Symposium, June 2006.
[26] M. T. Reiha, and J.R. Long, “A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13 um CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1023–1033, May 2007.
[27] Y. J. Lin, S. H. Hsu, J. D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave and wireless component letters, vol. 17, no.3, pp. 232–234, March 2007.
[28] H. L. Kao, Albert Chinb, K. C. Chang, and S. P. McAlisterc, “A low-power current-reuse LNA for ultra-wideband wireless receivers from 3.1–10.6 GHz,” Silicon Monolithic Integrated Circuit in RF System, pp. 257–260, Jan. 2007.
[29] S. Asgaran, M. J. Deen, and C.-H. Chen, “A 4-mW Monolithic CMOS LNA at 5.7GHz With the Gate Resistance Used For Input Matching,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 188–190, April 2006.
[30] L.-H. Lu, H.-H. Hsieh, and Y.-S. Wang, “A Compact 2.4/5.2-GHz CMOS Dual-Band Low-Noise Amplifier,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp. 685-687, October 2005.
[31] D. Linten, et al, “A 5-Ghz Fully Integrated ESD-Protected Low-Noise Amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1437–1442, July 2005.
[32] H.-W. Chiu, S.-S. Lu, and Y.-S. Lin, “A 2.17-dB NF 5-Ghz-Band Monolithic CMOS LNA With 10-mW DC Power Consumption,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, pp. 813–824, March 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊