|
[1] B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, andA.Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011). [2] K. F.Mak, C.Lee, J.Hone, J.Shan, and T. F.Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 2–5 (2010). [3] J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength Tunable Microdisk Cavity Light Source with a Chemically Enhanced MoS2 Emitter,” (2015). [4] D. Lembke and A. Kis, “Breakdown of High-Performance Monolayer MoS2 Transistors,” 11, 10070–10075 (2012). [5] H. Zeng, J. Dai, W. Yao, D. Xiao, and X.Cui, “Valley polarization in MoS2 monolayers by optical pumping,” 7(6) (2012). [6] J. N. Coleman, M. Lotya, A. O. Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. VShvets, S. K. Arora, G. Stanton, H. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J . F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. Mccomb, P. D. Nellist, and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” 331(2), 568–572 (2011). [7] K. Kalantar-zadeh, “Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS2 Nano flakes for Applications in Biological Systems,” (2014). [8] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer,” 1271–1275 (2010). [9] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” 5111–5116 (2011). [10] S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” 1–5 (2013). [11] L. Ma, D. N. Nath, E. W. L. Ii, C. H. Lee, M. Yu, A. Arehart, and S. Rajan, “mobility of 192 cm2 V − 1 s − 1 Epitaxial growth of large area single-crystalline few-layer MoS2 with high,” 72105(5) (2015. [12] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, M. Liu, Y. Chen, X. Qiao, P. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence,” (2013). [13] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni, and N. A. N. E. T.Al, “Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding,”6, 5738–5745 (2014). [14] Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. VMedhekar, M. S. Strano, K. Kalantar-zadeh, and W. E. T. Al, “Electrochemical Control of Photoluminescence in Two-Dimensional MoS2 Nano fl akes,” 11, 10083–10093 (2013). [15] A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. Lee, J. He, J. W. A. Iii, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” 10, 1–5 (2015). [16] A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-orozco, F. Wen, J. Lou, J. Naomi, A. Sobhani, A. Lauchner, S. Najmaei, and C. Ayala-orozco, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” 67148, 1–5 (2015). [17] X. Fi, Z. Liu,* Y. Hou, Y. Li, G. Yang, C. Su, Z. Wang, H. Zhong, Z. Zhuang, and Z. Guo, “Synthesis of Au NP@MoS2 Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging,” Materials. 10(6), 650 (2017). [18] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single- layer MoS2 field effect transistors,” ACS Nano. 6, 5635–5641 (2012). [19] C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, “A comparative study of lattice dynamics of three- and two- dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011). [20] C. Ataca, H. S Sahin, and S. Ciraci, “ Stable, single- layer MX2 transition-metal oxides and dichalcogenides in a honeycomb- like structure,” J. Phys. Chem. C. 116, 8983–8999 (2012). [21] A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination,” J. Phys. C: Solid State Phys. 5, 3540 (1972). [22] D.Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, “ Structure of single- molecular- layer MoS2,”Phys. Rev. B, 43, 12053–12056 (1991). [23] S. N. Shirodkar, and U. V. Waghmare, “Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2,” Phys. Rev. Lett. 112, 157601 (2014). [24] M. Acerce, D. Voiry, and M. Chhowalla, “ Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials,” Nat. Nanotechnol. 10, 313–318 (2015). [25] P. Cheng, K. Sun, and Y. H. Hu, “Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets,” Nano Lett. 16, 572–576 (2016). [26] P. Cheng, K. Sun, and Y. H. Hu, “Mechanically- induced reverse phase transformation of MoS2 from stable 2H to metastable 1T and its memristive behavior,” RSC Adv. 6, 65691–65697 (2016). [27] M. Nanocatalysts, T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution from,” 317(7), 100–103 (2007). [28] L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, and R. Vajtai, “Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS2 Films,” 1–6 (2013). [29] Y. Gong, S. Yang, L. Zhan, L. Ma, R.Vajtai, and P. M. Ajayan, “A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage,” 125–130 (2014). [30] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” 136805(9), 2–5 (2010). [31] H. D. Ha, D. J. Han, J. S. Choi, M. Park, and T. S. Seo, “Dual Role of Blue Luminescent MoS2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon,” 1–5 (2014). [32] Y. Wang and Y. Ni, “Molybdenum Disul fide Quantum Dots as a Photoluminescence Sensing Platform for 2, 4, 6-Trinitrophenol Detection,” (2014). [33] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic lightemitting diodes based on monolayer WSe2 p–n junctions,” 9(4), 268–272 (2014). [34] O. Lopez-sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photo-detectors based on monolayer MoS2,” 8(6), 497–501 (2013). [35] K. Gundogdu, “Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS2,” (2014). [36] J. Lichtenberg and N. F. DeRooij, “Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis Miniaturization,” Electrophoresis, 22, 258–271 (2001). [37] Y. Mourzina, D. Kalyagin, A. Steffen, and A. Offenhäusser, “Electrophoretic separations of neuromediators on microfluidic devices,” Talanta, 70(3), 489–498 (2006). [38] D. Ross and L. E. Locascio, “Microfluidic Temperature Gradient Focusing,” Anal. Chem. 74, 2556–2564 (2002). [39] A. N. and D. S. B. Grass, R. Hergenroder, “Determination of selenoamino acids by coupling of isotachophoresis / capillary zone electrophoresis on a PMMA microchip *,” J. Sep. Sci. 25, 135–140 (2002). [40] C. Eid, J. W. Palko, E. Katilius, and J. G. Santiago, “Rapid Slow O ff -Rate Modified Aptamer (SOMAmer)-Based Detection of C ‑ Reactive Protein Using Isotachophoresis and an Ionic Spacer,” Anal. Chem. 87, 6736–6743 (2015). [41] B. Y. Moghadam, K. T. Connelly, and J. D. Posner, “Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis,” Anal. Chem. 87(2), 1009–1017 (2015). [42] J. G. D. R. Shackman, “Counter-flow gradient electrofocusing,” Electrophoresis, 28, 556–571 (2007). [43] Q. Pu, J. Yun, H. Temkin, and S. Liu, “Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures,” Nano Lett. 4, 1099–1103 (2004). [44] J. H. Lee, S. Chung, S. J. Kim, and J. Han, “Poly (dimethylsiloxane) -Based Protein Preconcentration Using a Nanogap Generated by Junction Gap Breakdown key to the application of proteomics in a biological system .,” Anal. Chem. 79(16), 13770–13773 (2005). [45] Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold preconcentration of proteins and peptides by nanofluidic filter,” Anal. Chem. 77(14), 4293–4299 (2005). [46] S. M. Kim, M. aBurns, and E. F. Hasselbrink, “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.,” Anal. Chem. 78(14), 4779–4785 (2006). [47] J. H. Lee, Y. A. Song, S. R. Tannenbaum, and J. Han, “Increase of Reaction Rate and Sensitivity of Low-Abundance Enzyme Assay using Micro/Nanofluidic Preconcentration Chip,” Anal. Chem. 80, 3198–3204 (2008). [48] H. Chun, T. D. Chung, and J. M. Ramsey, “High yield sample preconcentration using a highly ion-conductive charge-selective polymer,” Anal. Chem. 82(14), 6287–6292 (2010). [49] C. Wang, J. Ouyang, D. K. Ye, J. J. Xu, H. Y. Chen, and X. H. Xia, “Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.,” Lab Chip, 15(12), 2664–2671 (2012). [50] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, 459(7248), 820–823 (2009). [51] S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Adv. Funct. Mater, 23, 3952 (2013). [52] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol, 7, 699 (2012). [53] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett, 11, 5111 (2011). [54] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett, 10, 1271 (2010). [55] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett, 105, 136805 (2010). [56] A. Castellanos-Gomez, M.Barkelid, A. M. Goossens, V.E. Calado, H. S. J. van der Zant, G. A. Steele, “Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor,” Nano Lett, 12, 3187−3192 (2012). [57] H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, “ Biocompatible Inorganic Fullerene-Like Molybdenum Disulfide Nanoparticles Produced by Pulsed Laser Ablation in Water,” ACS Nano, 5, 1276−1281 (2011). [58] B. Laursen A., S. Kegnæs, S. Dahl, I. Chorkendorff, “ Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution,” Energy Environ. Sci, 5, 5577−5591 (2012). [59] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, “ Defect-rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution,” Adv. Mater, 25, 5807−5813 (2013). [60] H. Qiu, Z. Li, S. Gao, P. Chen, C. Zhang, S. Z. Jiang, S. Xu, C. Yang, H. Li, “Large-Area MoS2 Thin Layers Directly Synthesized on Pyramid-Si Substrate for Surface-Enhanced Raman Scattering,” RSC.Adv, 5, 83899−83905 (2015). [61] L. Sun, H. Hu, D. Zhan, J. Yan, L. Liu, J. S. Teguh, E. K. Yeow, P. S. Lee, Z. Shen, “ Plasma Modified MoS2 Nanoflakes for Surface Enhanced Raman Scattering,” Small, 10, 1090−1095 (2014). [62] T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang, X. Song, S. Goel, T. E. Barnhart, W. Cai, et al, “ Iron Oxide Decorated MoS2 Nanosheets with Double PEG ylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy,” ACS Nano, 9, 950−960 (2015). [63] S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, “ Stabilizing MoS2 Nanosheets Through SnO2 Nancorystal Decoration for High-Performance Gas Sensing in Air,” Small, 11, 2305−2313, (2015). [64] A. Wu, C. Tian, Y. Jiao, Q. Yan, G. Yang, Fu. H. Sequential, “ Two-Step Hydrothermal Growth of MoS2/CdS Core-Shell Heterojunctions for Efficient Visible Light-Driven Photocatalytic H2 Evolution,” Appl. Catal., B, 203, 955−963, (2017). [65] C. Zhang, H. B. Wu, Z. Guo, X. W. Lou, “ Facile Synthesis of Carbon-Coated MoS2 Nanorods with Enhanced Lithium Storage Properties,” Electrochem. Commun, 20, 7−10 (2012). [66] S. Wang, B. Y. Guan, L. Yu, X. W. D. Lou, “ Rational Design of Three-Layered TiO2@Carbon@MoS2 Hierarchical Nanotubes for Enhanced Lithium Storage,” Adv. Mater, 29, 1702724 (2017). [67] S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang, “ Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles,” ACS Appl. Mater. Interfaces, 6, 18735−18741 (2014). [68] T. Daeneke, B. J. Carey, A. F. Chrimes, J. Zhen Ou, D. W. M. Lau, B. C. Gibson, M. Bhaskaran, K. Kalantar-zadeh, “ Light Driven Growth of Silver Nanoplatelets on 2D MoS2 Nanosheet Templates. J. Mater,” Chem. C, 3, 4771−4778 (2015). [69] J. Zhao, Z. Zhang, S. Yang, H. Zheng, Y. Li, “ Facile Synthesis of MoS2 Nanosheet-Silver Nanoparticles Composite for Surface Enhanced Raman Scattering and Electrochemical Activity,” J. Alloys Compd, 559, 87−91 (2013). [70] X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, “ Solution-Phase Epitaxial Growth of Noble Metal Nanostructures on Dispersible Single-Layer Molybdenum Disulfide Nanosheets,” Nat. Commun, 4, 1444 (2013). [71] U. Bhanu, M. R. Islam, L. Tetard, S. I. Khondaker, “ Photoluminescence Quenching in Gold-MoS2 Hybrid Nanoflakes. Sci. Rep, 4, 5575 (2014). [72] Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, H. Y. Chen, “Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets,” J. Am. Chem. Soc, 137, 7365−7370 (2015). [73] P. K. Jain, M. A. El-Sayed, Nano Letters, 8, 4347 (2008).
|