跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊哲勛
研究生(外文):ZHUANG, ZHE-XUN
論文名稱:利用二硫化鉬量子點之螢光性質作為蛋白質標記應用
論文名稱(外文):Using the Fluorescent Properties of Molybdenum Disulfide Quantum Dots As a Protein Labeling Application
指導教授:王祥辰
指導教授(外文):WANG, HSIANG-CHEN
口試委員:王祥辰郭啟東張守進闕郁倫
口試委員(外文):WANG,HSIANG-CHENKUO,CHIE-TONGCHANG,SHOOU-JINNCHUEH,YU-LUN
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:85
中文關鍵詞:二硫化鉬量子點金奈米粒子蛋白質螢光
外文關鍵詞:MoS2Quantum dotsAu nanoparticlesProteinFluorescent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由超聲波震盪法將微米大小的MoS2粉末製備成MoS2量子點分散液,再加入金奈米粒子作為光學量測輔助並得知其光學特性。本論文選用之分散液溶劑為NMP,被認為具有與MoS2較接近的表面能量,使製備出之分散液具有良好的穩定性。再來我們對於MoS2分散液進行TEM的量測,來觀察MoS2量子點的大小與形貌。然而我們所觀測到的量子點尺寸約為3.349nm且分布均勻,並透過EDX檢測來驗證元素的存在,由於MoS2奈米粒子尺寸< 100 nm 時具有光致發光的特性,因此我們對於所製備之樣本使用325 nm 波長之He-Cd雷射進行激發並產生相應的光源,而在拉曼量測部分,藉由加入金奈米粒子增強訊號可以觀察到合成出的量子點具有特徵峰值可以驗證其材料特性,另外也會觀察到吸收光譜往短波長移動的現象。在成功合成量子點後,將其與蛋白質結合並量測與不同濃度下的蛋白質結合所產生的螢光強度,我們可以推斷出螢光效果最好的濃度進而應用到蛋白質螢光標記之生物領域。
關鍵字: 二硫化鉬、量子點、金奈米粒子、蛋白質、螢光

In this paper, micron-sized MoS2 powder was prepared into MoS2 quantum dots dispersion by ultrasonic vibration method, and then gold nanoparticles were added as optical measurement aid to know its optical properties. The dispersion solvent selected in this paper is NMP, which is considered to have a surface energy close to that of MoS2, so that the prepared dispersion has good stability. Next, we measured the TEM of the MoS2 dispersion to observe the size and morphology of the MoS2 quantum dots. However, the size of quantum dots were about 3.349 nm and evenly distributed then the presence of the elements was verified by EDX detection. When the size of MoS2 nanoparticles is < 100 nm, it has photoluminescence properties. Therefore, we used the He-Cd laser at 325 nm to excite and generate the corresponding light source. In the Raman measurement section, the signal is enhanced by adding Au nanoparticles so that the synthesized quantum dots can be observed to have characteristic peaks. This verifies its material properties. In addition, the phenomenon that the absorption peak shifts to a short wavelength is also observed. After successfully synthesizing quantum dots, combining them with proteins and measuring the fluorescence intensity produced by binding to proteins at different concentrations, we can infer the best concentration of fluorescence and apply it to the biological field of protein fluorescent labeling.

Keywords: MoS2, Quantum dots, Au nanoparticles, Protein, Fluorescent

目錄 VI
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 二維材料MoS2介紹 2
1-3 MoS2量子點的特性與應用 3
1-4蛋白質檢測介紹 4
1-5研究動機 6
1-6章節相關規劃 7
第二章 理論 17
2-1 二硫化鉬簡介 17
2-1-1 二硫化鉬物理特性 17
2-1-2 二硫化鉬化學特性 18
2-2 超聲波震盪剝離機制 19
2-3 量子點尺寸效應發光原理 19
2-4 MoS2量子點加入金奈米粒子增加拉曼訊號 21
2-5蛋白質濃縮螢光量測 24
2-5-1排斥集中效應 24
2-5-2濃度極化之離子消耗現象 25
第三章 實驗樣品與實驗方法 35
3-1實驗材料及藥品規格 35
3-2實驗流程及步驟 35
3-2-1 MoS2研磨前置作業 36
3-2-2 MoS2真空乾燥作業 37
3-2-3 MoS2乾燥後重新分散至溶劑中 37
3-2-4探針式超聲波剝離MoS2粒子 37
3-2-5超聲波震盪後續處理 38
3-2-6重力離心分離MoS2粒子 38
3-2-7從NMP轉移到水相 38
3-2-8分散液製作量測樣本 39
3-2-9分散液與BSA進行混合 39
3-3實驗儀器及裝置 39
3-3-1探針式超聲波震盪儀 39
3-3-2離心機 40
3-3-3循環式烘箱系統 40
3-3-4超音波洗淨機 40
3-4 分析儀器 41
3-4-1拉曼光譜分析儀(Raman spectrometer) 41
3-4-2穿透式電子顯微鏡(TEM) 42
3-4-3能量色散X射線光譜儀(EDS) 43
3-4-4紫外光-可見光光譜儀 44
3-4-5光激螢光光譜(Photoluminescence,PL) 45
3-4-6 X光繞射分析(X-ray Diffraction, XRD) 45
第四章 實驗結果與討論 59
4-1 二硫化鉬量子點以及加入金奈米粒子之光 學與材料特性量測 59
4-1-1 TEM 量測 59
4-1-2 EDS 量測 59
4-1-3 UV–vis spectra 量測 60
4-1-4 PL spectra 量測 60
4-1-5 Raman 量測 61
4-1-6 XRD 量測 61
4-2二硫化鉬量子點加金奈米粒子與BSA混合之光學與材料特性量測 62
4-2-1 TEM 量測 62
4-2-2 EDS 量測 62
4-2-3 UV–vis spectra 量測 63
4-2-4 BSA Fluorescence Intensity 量測 63
第五章 結論與未來展望 77
參考文獻 79
[1] B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, andA.Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[2] K. F.Mak, C.Lee, J.Hone, J.Shan, and T. F.Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 2–5 (2010).
[3] J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E. Cubukcu, “Wavelength Tunable Microdisk Cavity Light Source with a Chemically Enhanced MoS2 Emitter,” (2015).
[4] D. Lembke and A. Kis, “Breakdown of High-Performance Monolayer MoS2 Transistors,” 11, 10070–10075 (2012).
[5] H. Zeng, J. Dai, W. Yao, D. Xiao, and X.Cui, “Valley polarization in MoS2 monolayers by optical pumping,” 7(6) (2012).
[6] J. N. Coleman, M. Lotya, A. O. Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. VShvets, S. K. Arora, G. Stanton, H. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J . F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. Mccomb, P. D. Nellist, and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” 331(2), 568–572 (2011).
[7] K. Kalantar-zadeh, “Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS2 Nano flakes for Applications in Biological Systems,” (2014).
[8] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer,” 1271–1275 (2010).
[9] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” 5111–5116 (2011).
[10] S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,” 1–5 (2013).
[11] L. Ma, D. N. Nath, E. W. L. Ii, C. H. Lee, M. Yu, A. Arehart, and S. Rajan, “mobility of 192 cm2 V − 1 s − 1 Epitaxial growth of large area single-crystalline few-layer MoS2 with high,” 72105(5) (2015.
[12] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, M. Liu, Y. Chen, X. Qiao, P. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, “Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence,” (2013).
[13] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni, and N. A. N. E. T.Al, “Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding,”6, 5738–5745 (2014).
[14] Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. VMedhekar, M. S. Strano, K. Kalantar-zadeh, and W. E. T. Al, “Electrochemical Control of Photoluminescence in Two-Dimensional MoS2 Nano fl akes,” 11, 10083–10093 (2013).
[15] A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. Lee, J. He, J. W. A. Iii, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” 10, 1–5 (2015).
[16] A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-orozco, F. Wen, J. Lou, J. Naomi, A. Sobhani, A. Lauchner, S. Najmaei, and C. Ayala-orozco, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” 67148, 1–5 (2015).
[17] X. Fi, Z. Liu,* Y. Hou, Y. Li, G. Yang, C. Su, Z. Wang, H. Zhong, Z. Zhuang, and Z. Guo, “Synthesis of Au NP@MoS2 Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging,” Materials. 10(6), 650 (2017).
[18] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single- layer MoS2 field effect transistors,” ACS Nano. 6, 5635–5641 (2012).
[19] C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, “A comparative study of lattice dynamics of three- and two- dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).
[20] C. Ataca, H. S Sahin, and S. Ciraci, “ Stable, single- layer MX2 transition-metal oxides and dichalcogenides in a honeycomb- like structure,” J. Phys. Chem. C. 116, 8983–8999 (2012).
[21] A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. II. Group via: trigonal prismatic coordination,” J. Phys. C: Solid State Phys. 5, 3540 (1972).
[22] D.Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, “ Structure of single- molecular- layer MoS2,”Phys. Rev. B, 43, 12053–12056 (1991).
[23] S. N. Shirodkar, and U. V. Waghmare, “Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2,” Phys. Rev. Lett. 112, 157601 (2014).
[24] M. Acerce, D. Voiry, and M. Chhowalla, “ Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials,” Nat. Nanotechnol. 10, 313–318 (2015).
[25] P. Cheng, K. Sun, and Y. H. Hu, “Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets,” Nano Lett. 16, 572–576 (2016).
[26] P. Cheng, K. Sun, and Y. H. Hu, “Mechanically- induced reverse phase transformation of MoS2 from stable 2H to metastable 1T and its memristive behavior,” RSC Adv. 6, 65691–65697 (2016).
[27] M. Nanocatalysts, T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution from,” 317(7), 100–103 (2007).
[28] L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, and R. Vajtai, “Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS2 Films,” 1–6 (2013).
[29] Y. Gong, S. Yang, L. Zhan, L. Ma, R.Vajtai, and P. M. Ajayan, “A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage,” 125–130 (2014).
[30] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” 136805(9), 2–5 (2010).
[31] H. D. Ha, D. J. Han, J. S. Choi, M. Park, and T. S. Seo, “Dual Role of Blue Luminescent MoS2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon,” 1–5 (2014).
[32] Y. Wang and Y. Ni, “Molybdenum Disul fide Quantum Dots as a Photoluminescence Sensing Platform for 2, 4, 6-Trinitrophenol Detection,” (2014).
[33] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic lightemitting diodes based on monolayer WSe2 p–n junctions,” 9(4), 268–272 (2014).
[34] O. Lopez-sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photo-detectors based on monolayer MoS2,” 8(6), 497–501 (2013).
[35] K. Gundogdu, “Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS2,” (2014).
[36] J. Lichtenberg and N. F. DeRooij, “Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis Miniaturization,” Electrophoresis, 22, 258–271 (2001).
[37] Y. Mourzina, D. Kalyagin, A. Steffen, and A. Offenhäusser, “Electrophoretic separations of neuromediators on microfluidic devices,” Talanta, 70(3), 489–498 (2006).
[38] D. Ross and L. E. Locascio, “Microfluidic Temperature Gradient Focusing,” Anal. Chem. 74, 2556–2564 (2002).
[39] A. N. and D. S. B. Grass, R. Hergenroder, “Determination of selenoamino acids by coupling of isotachophoresis / capillary zone electrophoresis on a PMMA microchip *,” J. Sep. Sci. 25, 135–140 (2002).
[40] C. Eid, J. W. Palko, E. Katilius, and J. G. Santiago, “Rapid Slow O ff -Rate Modified Aptamer (SOMAmer)-Based Detection of C ‑ Reactive Protein Using Isotachophoresis and an Ionic Spacer,” Anal. Chem. 87, 6736–6743 (2015).
[41] B. Y. Moghadam, K. T. Connelly, and J. D. Posner, “Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis,” Anal. Chem. 87(2), 1009–1017 (2015).
[42] J. G. D. R. Shackman, “Counter-flow gradient electrofocusing,” Electrophoresis, 28, 556–571 (2007).
[43] Q. Pu, J. Yun, H. Temkin, and S. Liu, “Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures,” Nano Lett. 4, 1099–1103 (2004).
[44] J. H. Lee, S. Chung, S. J. Kim, and J. Han, “Poly (dimethylsiloxane) -Based Protein Preconcentration Using a Nanogap Generated by Junction Gap Breakdown key to the application of proteomics in a biological system .,” Anal. Chem. 79(16), 13770–13773 (2005).
[45] Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold preconcentration of proteins and peptides by nanofluidic filter,” Anal. Chem. 77(14), 4293–4299 (2005).
[46] S. M. Kim, M. aBurns, and E. F. Hasselbrink, “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.,” Anal. Chem. 78(14), 4779–4785 (2006).
[47] J. H. Lee, Y. A. Song, S. R. Tannenbaum, and J. Han, “Increase of Reaction Rate and Sensitivity of Low-Abundance Enzyme Assay using Micro/Nanofluidic Preconcentration Chip,” Anal. Chem. 80, 3198–3204 (2008).
[48] H. Chun, T. D. Chung, and J. M. Ramsey, “High yield sample preconcentration using a highly ion-conductive charge-selective polymer,” Anal. Chem. 82(14), 6287–6292 (2010).
[49] C. Wang, J. Ouyang, D. K. Ye, J. J. Xu, H. Y. Chen, and X. H. Xia, “Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.,” Lab Chip, 15(12), 2664–2671 (2012).
[50] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, 459(7248), 820–823 (2009).
[51] S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Adv. Funct. Mater, 23, 3952 (2013).
[52] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol, 7, 699 (2012).
[53] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett, 11, 5111 (2011).
[54] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett, 10, 1271 (2010).
[55] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett, 105, 136805 (2010).
[56] A. Castellanos-Gomez, M.Barkelid, A. M. Goossens, V.E. Calado, H. S. J. van der Zant, G. A. Steele, “Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor,” Nano Lett, 12, 3187−3192 (2012).
[57] H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, “ Biocompatible Inorganic Fullerene-Like Molybdenum Disulfide Nanoparticles Produced by Pulsed Laser Ablation in Water,” ACS Nano, 5, 1276−1281 (2011).
[58] B. Laursen A., S. Kegnæs, S. Dahl, I. Chorkendorff, “ Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution,” Energy Environ. Sci, 5, 5577−5591 (2012).
[59] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, “ Defect-rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution,” Adv. Mater, 25, 5807−5813 (2013).
[60] H. Qiu, Z. Li, S. Gao, P. Chen, C. Zhang, S. Z. Jiang, S. Xu, C. Yang, H. Li, “Large-Area MoS2 Thin Layers Directly Synthesized on Pyramid-Si Substrate for Surface-Enhanced Raman Scattering,” RSC.Adv, 5, 83899−83905 (2015).
[61] L. Sun, H. Hu, D. Zhan, J. Yan, L. Liu, J. S. Teguh, E. K. Yeow, P. S. Lee, Z. Shen, “ Plasma Modified MoS2 Nanoflakes for Surface Enhanced Raman Scattering,” Small, 10, 1090−1095 (2014).
[62] T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang, X. Song, S. Goel, T. E. Barnhart, W. Cai, et al, “ Iron Oxide Decorated MoS2 Nanosheets with Double PEG ylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy,” ACS Nano, 9, 950−960 (2015).
[63] S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, “ Stabilizing MoS2 Nanosheets Through SnO2 Nancorystal Decoration for High-Performance Gas Sensing in Air,” Small, 11, 2305−2313, (2015).
[64] A. Wu, C. Tian, Y. Jiao, Q. Yan, G. Yang, Fu. H. Sequential, “ Two-Step Hydrothermal Growth of MoS2/CdS Core-Shell Heterojunctions for Efficient Visible Light-Driven Photocatalytic H2 Evolution,” Appl. Catal., B, 203, 955−963, (2017).
[65] C. Zhang, H. B. Wu, Z. Guo, X. W. Lou, “ Facile Synthesis of Carbon-Coated MoS2 Nanorods with Enhanced Lithium Storage Properties,” Electrochem. Commun, 20, 7−10 (2012).
[66] S. Wang, B. Y. Guan, L. Yu, X. W. D. Lou, “ Rational Design of Three-Layered TiO2@Carbon@MoS2 Hierarchical Nanotubes for Enhanced Lithium Storage,” Adv. Mater, 29, 1702724 (2017).
[67] S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang, “ Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles,” ACS Appl. Mater. Interfaces, 6, 18735−18741 (2014).
[68] T. Daeneke, B. J. Carey, A. F. Chrimes, J. Zhen Ou, D. W. M. Lau, B. C. Gibson, M. Bhaskaran, K. Kalantar-zadeh, “ Light Driven Growth of Silver Nanoplatelets on 2D MoS2 Nanosheet Templates. J. Mater,” Chem. C, 3, 4771−4778 (2015).
[69] J. Zhao, Z. Zhang, S. Yang, H. Zheng, Y. Li, “ Facile Synthesis of MoS2 Nanosheet-Silver Nanoparticles Composite for Surface Enhanced Raman Scattering and Electrochemical Activity,” J. Alloys Compd, 559, 87−91 (2013).
[70] X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, “ Solution-Phase Epitaxial Growth of Noble Metal Nanostructures on Dispersible Single-Layer Molybdenum Disulfide Nanosheets,” Nat. Commun, 4, 1444 (2013).
[71] U. Bhanu, M. R. Islam, L. Tetard, S. I. Khondaker, “ Photoluminescence Quenching in Gold-MoS2 Hybrid Nanoflakes. Sci. Rep, 4, 5575 (2014).
[72] Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, H. Y. Chen, “Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets,” J. Am. Chem. Soc, 137, 7365−7370 (2015).
[73] P. K. Jain, M. A. El-Sayed, Nano Letters, 8, 4347 (2008).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊