跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/13 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮英俊
研究生(外文):Nguyen Anh Tuan
論文名稱:無閥門阻抗幫浦之特性研究
論文名稱(外文):Study on Characteristics of a Valveless Impedance Pump
指導教授:溫志湧
指導教授(外文):Chih Yung Wen
學位類別:碩士
校院名稱:大葉大學
系所名稱:車輛工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:60
中文關鍵詞:無閥門阻抗幫浦彈性軟管波的傳遞
外文關鍵詞:valveless impedance pumpelastic tubewave propagation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們以實驗和理論方法來進行無閥式阻抗幫浦的
特性研究。實驗部份,無閥式阻抗幫浦是由一組機電壓縮機構、一
對彈性軟管和硬管與兩個觀察用儲水管所組成。彈性的乳膠軟管連
接塑膠硬管構成不對稱的阻抗,並分別在流道的兩端膠合上垂直的
壓克力儲水管以利觀察,透過機電壓縮機構於軟管不同位置上以一
定壓縮行程、波型與頻率壓縮軟管外壁,在流體的傳遞波與反射波
的交互作用下,產生壓力差來驅動流體。根據實驗的結果顯示,流
體的流動方向是可逆的,並且壓力差大小與頻率、壓縮行程和波形
息息相關。由實驗的結果顯示,當軟管長度為50mm、內徑為6mm、
頻率為42 赫茲時,最大流率可達2.45 l min1。量測結果顯示流率對
壓縮頻率呈現非線性的複雜反應。
在理論方面的研究,我們以非穩態、一維Euler 方程式,配合
適合的邊界條件來建立一個平面的模擬系統,並與實驗結果作一比
較。分析結果顯示,理論所模擬的流率與驅動頻率的關係與實驗量
測趨勢相近。
In this work, we have conducted the experimental and theoretical
investigations of characteristics of a valveless impedance pump. The
valveless impedance pump was constructed of an electric-mechanical
compression mechanism, an elastic tube, a rigid tube and two reservoirs.
The elastic tube of latex rubber was connected to the rigid plastic tube
and formed asymmetry impedance. The two tubes were glued to two
acrylic reservoirs, respectively. Through cumulative effects of wave
propagation and reflection originating from a compression
electric-mechanical mechanism located at the different position along
the length of the elastic tube, a pressure across the pump can be built up
to drive the flow. The experimental results show the flow is reversible
and the pressure heads are highly dependent on the frequency, amplitude
wave form and location of compression. Maximum flow rate of 2.45
l min1 at 42 Hz has been achieved with an elastic tube 50mm in length
and 6mm in inner diameter. Measurements show a complex non-linear
behavior in response to the compression frequency.
In the theoretical work, we have modeled such a system as a flat
tube with unsteady and one-dimensional flow, Euler’s equation with
appropriate boundary conditions. Analytic solutions calculated were
compared with experimental flow rates. Similar responses of flow rates
to actuating frequencies were observed.
Cover
Credential
Authorization letters ..............................................................................iv
Abstract(Chinese)..................................................................................vi
Abstract(English)................................................................................ viii
Acknowledgments .................................................................................ix
Table of contents ....................................................................................x
List of Figures ......................................................................................xii
List of Table ........................................................................................xvi
List of symbols ...................................................................................xvii
Chapter 1 Introduction........................................................................... 1
1.1 Pumping Classification................................................................. 1
1.1.1 Dynamic Pumps.................................................................. 2
1.1.2 Displacement Pumps .......................................................... 3
1.1.3 Impedance Pump ................................................................ 4
1.2 Literature of Survey...................................................................... 6
1.3. Research Objective.................................................................... 12
Chapter 2 Experimental setup.............................................................. 14
2.1 Description of Experiments........................................................ 15
2.2 Tubing Materials ........................................................................ 16
2.3 Actuation .................................................................................... 18
2.3.1 Electric-Mechanical Compression Mechanism................ 18
- xi -
2.3.2 Calculation of Duty Cycle ................................................ 20
2.4 Valveless Impedance Pump ....................................................... 21
2.5 Experimental Arrangement for Measurement of Cross Section
Area A(x, t) ................................................................................ 24
2.5.1 Calculation of Times to Take Pictures of the Deformation of
the Tube Wall............................................................................. 25
Chapter 3 Theoretical analysis ............................................................ 27
3.1. Analysis and Solution................................................................ 27
Chapter 4 Results and Discussion ....................................................... 32
4.1 Flow Characterization ................................................................ 32
4.1.1 Pressure Head ................................................................... 32
4.1.2 Response of Head Pressure in Time ................................. 34
4.2 Flow Rate.................................................................................... 38
4.3 Liebau Number () for Various Womersley Number ()........ 42
4.4 High-Speed Flash Photographs .................................................. 46
4.5 Compression of Theoretical Results and Experimental Data .... 50
Chapter 5 Conclusions......................................................................... 52
Appendix.............................................................................................. 54
References............................................................................................ 58
[1] Rinderknecht, D., Hickerson, A.I., and Gharib, M., “A valveless
micro impedance pump driven by electromagnetic actuation,”
Journal of Micromechanics and Microengineering, vol. 15, pp.
861-866, 2005.
[2] Liebau, G., “Uber ein ventilloses Pumpprinzip, ”
Naturwissenschaften vol. 41, p. 327, 1954.
[3] Thomman, H., “ A simplepumping mechanism in a valveless
tube,” Zeitschrift fur angewandte Mathematik und Physik, vol. 29,
pp. 169–177, 1978.
[4] Jung, E., and Peskin, C., “2-D simulations of valveless pumping
using immersed boundary methods (ii),” Ph.D. Dissertation, 2001.
[5] Moser, M., Huang, J. W., Schwarz, G. S., Kenner, T., and
Noordergraaf, A., “Impedance defined flow: Generalization of
William Harvey’s concept of the circulation - 370 years later,”
International Journal of CardiovascularMedicine and Science, vol.
1, no. 3/4, pp. 205–211, 1998.
[6] Borzi, A., Propst, G., “Numerical investigation of the Liebau
phenomenon,” Zeitschrift fur angewandte mathematic und physik,
vol. 54, no.6, pp. 1050-1072, 2003.
[7] Takagi, S., and Enbody, R. J., “Study of a piston pump without
Valves,” Bulletin of JSME 28, pp. 831-836, 1985.
[8] Andersson, H., and Wijingaart, W., Enoksson, P., “A valveless
diffuser micropump fo microfluidic analytical systems,” Enshede,
the Netherlands, 2000.
[9] Grotberg, J. B., and Jensen, O. E., “Biofluid mechanics in flexible
- 59 -
tubes,” Annual Review of Fluid Mechanics, vol. 36, pp. 121–147,
2004.
[10] Jensen, O., “Instabilities of flow in a collapsed tube,” Journal of
Fluid Mechanics, vol. 220, pp. 623–659, 1990.
[11] Jensen, O., and Pedley, T., “The existence of steady flow in a
collapsed tube,” Journal of Fluid Mechanics, vol. 206, pp.
339–374, 1989.
[12] Olsen, J. H., and Shapiro, A. H., “Large-amplitude unsteady flow
in liquid-filled elastic tubes,” Journal of Fluid Mechanics, vol. 29,
no. 3, pp. 513–538, 1967.
[13] Pontrelli, G., “A mathematical model of flow in a liquid-filled
visco-elastic tube,” Medical and Biological Engineering and
Computing, vol. 40, no. 5, pp. 550–556, 2002.
[14] Wang, D., and Tarbell, J., “Nonlinear analysis of flow in an elastic
tube (artery): Steady streaming effects,” Journal of Fluid
Mechanics, vol. 239, pp. 341–358, 1992.
[15] Okamura, S., Suzuki, A., Johkura, K., Ogiwara, N., Yokouchi, T.,
and Sasaki, K., “Formation of the biopulsatile vascular pump by
cardiomyocyte transplants circumvallating the abdominal aorta,”
Tissue Engineering, vol. 8, pp. 201–211, 2002.
[16] Toro, E., Enbody, R.J., “Science and application of nanotubes,”
Kluwer Academic/ Plenum Publishers, New York, 2000.
[17] Andersson, H., Der Wijngaart, W., Nilsson, P., Enoksson, P., and
Stemme, G., “A valveless diffuser micropump for microfluidic
analytical systems,” The microTAS syposium, Enschede, 1999.
[18] Rath, H. and Teipel, I., “Der Fordereffekt in ventillosen,
elastischen Leitungen,“Zeitschrift frangewandte Mathematik und
Physik, vol. 29, pp. 123–133, 1978.
- 60 -
[19] Hickerson, A. I., Rinderknecht, D., and Ghrib, M., “Experimental
study of the behaviors of a valveless impedance pump,”
Experiments in Fluids, vol. 38, no. 4, pp. 535-540, 2005.
[20] Auerbach, D., Moehring, W., and Moser, M., “An analytic
approach to the Liebau problem of valveless pumping,”
Cardiovascular Engineering: An International Journal, Vol.4, no.2,
pp.201-207, 2004.
[21] Hickerson, A. I., “An experimental analysis of the characteristic
behaviors of an impedance pump,” Ph.D. Dissertation, California
Institute of Technology, California, 2005.
[22] Wen, C.Y., Chang-Jian, S.K., and Chuan, M.J., “Experimental
studies of supersonic flows in soap films,” Proceeding of
PSFVIP-pp. 18-21, 2001.
[23] Wen, C.Y., Cheng, C. H., Jian, C. N., Nguyen, T. A., and Hsu, C.
Y., “A Valveless Micro Impedance Pump Driven by PZT
Actuation,”Proceedings of ICAM2005, 2005.
[24] Sanks, R.L., George, T. L., “Pumping station design,” 2nd edition,
Mc Graw-Hill, New York, 1998.
[25] Mackay, R.C., “The pratical pumping handbook”, Mc Graw-Hill,
New York, 2001.
[26] Ottensen, J., “Valveless pumping in a fluid-filled closed elastic
tube system: one dimenstional theory with experimental
validation,” Journal of Mathematical Biological, vol. 46, no. 4, pp.
309-332, 2003.
[27] Von Bredow, H. J., “Untersuchung eines ventillosen
Pumpprinzips,“ Fortscher Reihe 7, Nr. 9, 1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top