跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙冠宇
研究生(外文):Kuan-Yu Chao
論文名稱:含鎳赤血鹽改質磷酸鋰鐵電極之大電流/脈衝充放電能力研究
論文名稱(外文):Nickel Hexacyanoferrate-Modified LiFePO4 Cathodes with High-Rate and High-Pulse Current Charge-Discharge Capabilities
指導教授:邱國峰邱國峰引用關係呂晃志
口試委員:邱國峰呂晃志顏聰富
口試日期:2016-05-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:63
中文關鍵詞:含鎳赤血鹽逆微胞法磷酸鋰鐵電極大電流脈衝綠色電網電化學阻抗測試
外文關鍵詞:Nickel hexacyanoferrateLiFePO4 cathodesHigh-ratePulse-current charge-dischargeGreen gridsElectrochemical impedance spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含鎳赤血鹽經由逆微胞法製備出並塗佈於磷酸鋰鐵電極表面改善大電流以及脈衝之表現,含鎳赤血鹽內含低應變之開放式網路結構並且顯示出氧化還原對電位(3.4 V vs. Li/Li+)與磷酸鋰鐵相似,經由含鎳赤血鹽改質之磷酸鋰鐵電極展現大電流充放電能力之改進,在10 C時放電電容量於改質後提升15%。這也可以發現出改質後的磷酸鋰鐵電極能承受大充/放電脈衝並且適用於綠色能源電網中,應用0.01 C以及5 C交替之脈衝電流在0.2 C 充/放電過程中去模擬綠色電網之情況,在模擬脈衝的條件下進行50圈掃描可以看出改質後之磷酸鋰鐵電極表現出最佳之92 %電容量維持率,而未改質之電極只有75 %。這結果可以被象徵出透過含鎳赤血鹽之披覆可以降低電極/電解液之界面阻抗,其特性可由電化學阻抗測試證明。
Nickel hexacyanoferrate (NiHCF) was synthesized by reverse micelle method and was coated on LiFePO4 (LFP) cathodes to improve the high-rate and pulse-current charge-discharge performances. This NiHCF has a low-strain open framework structure and exhibits a redox potential similar to that of LFP. The NiHCF-modified LFP cathodes show improved high-rate capability, with a 10 C discharge capacity that is 15% higher than that of pristine LFP. The NiHCF-modified LFP can endure high-pulse current charge-discharge, which is well suited for green energy grids. The modified and pristine LFP cathodes were operated with alternate pulse currents of 0.01 C and 5 C introduced into a 0.2 C discharge/charge process to simulate the conditions of green grids. The modified LFP cathodes exhibited a capacity retention of 92% after 50 cycles, whereas the pristine sample showed a capacity retention of only 75%. These results can be attributed to the reduction of electrode/electrolyte interface resistances due to NiHCF coating, as demonstrated by electrochemical impedance spectroscopy.
Content
致謝 i
Publications List iii
摘要 iv
Abstract v
Figure Caption List vii
Table List ix
Chapter 1. Research Motivation 1
Chapter 2. Introduction 3
2.1. Green grid and energy storage system 3
2.2. Lithium ion batteries 4
2.3 LiFePO4 6
2.4 Prussian blue and its analogues 7
2.5 Reverse Micelle Method 8
2.6 Failure Factor of Batteries under Pulse condition 8
Chapter 3. Experimental 19
3.1. List of Experimental Materials 19
3.2. List of Experimental Apparatus 20
3.3. Surface modification 21
3.4. LFP electrode preparation 21
3.5. Electrode characterization 22
Chapter 4. Results and Discussion 26
Chapter 5. Conclusion and Future work 43
5.1. Conclusion 43
5.2. Future work 44
References 45
References
[1]I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, vol. 13, 2009.
[2]Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, et al., "Electrochemical energy storage for green grid," Chem Rev, vol. 111, May 11 2011.
[3]M. K. Deshmukh and S. S. Deshmukh, "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, vol. 12, 2008.
[4]B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices," SCIENCE, vol. 334, 2011.
[5]H. Ibrahim, A. Ilinca, and J. Perron, "Energy storage systems—Characteristics and comparisons," Renewable and Sustainable Energy Reviews, vol. 12, 2008.
[6]M. Yoshio, R. J.Brodd, and A. Kozawa, "Lithium-Ion Batteries," Springer Science 2009.
[7]J.-M. Tarascon and M. Armand, "Issues and Challenges facing rechargeable lithium batteries," NATURE, vol. 414, 2001.
[8]O. Toprakci, H. A.K, Toprakci, L. Ji, and X. Zhang, "Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries," KONA Powder and Particle Journal, vol. 28, 2010.
[9]J. B. Goodenough and K. Youngsik, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, 2010.
[10]W. Tahil, "How Much Lithium does a LiIon EV battery really need?," Meridian International Research, France2010.
[11]A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, vol. 144, 1997.
[12]X. Hu, Y. Huai, Z. Lin, J. Suo, and Z. Deng, "A (LiFePO4-AC)/Li4Ti5O12 Hybrid Battery Capacitor," Journal of The Electrochemical Society, vol. 154, 2007.
[13]G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, and M. Wohlfahrt-Mehrens, "Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique," Journal of Power Sources, vol. 119-121, 2003.
[14]C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, "A High-Rate, Nanocomposite LiFePO4/Carbon Cathode," Electrochemical and Solid-State Letters, vol. 8, 2005.
[15]J. D. Wilcox, M. M. Doeff, M. Marcinek, and R. Kostecki, "Factors Influencing the Quality of Carbon Coatings on LiFePO4," Journal of The Electrochemical Society, vol. 154, 2007.
[16]Y. Wang, Y. Wang, E. Hosono, K. Wang, and H. Zhou, "The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method," Angew Chem Int Ed Engl, vol. 47, 2008.
[17]A. Varzi, C. Ramirez-Castro, A. Balducci, and S. Passerini, "Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: A comparative study between activated carbon and multi-walled carbon nanotubes," Journal of Power Sources, vol. 273, 2015.
[18]H. C. Shin, W. I. Cho, and H. Jang, "Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black," Electrochimica Acta, vol. 52, 2006.
[19]H. Mazor, D. Golodnitsky, L. Burstein, A.Gladkich, and E. Peled, "Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries," Journal of Power Sources, vol. 198, 2012.
[20]T. Nakamura, Y. Miwa, M. Tabuchi, and Y. Yamada, "Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties," Journal of The Electrochemical Society, vol. 153, 2006.
[21]Y.-H. Huang and J. B. Goodenough, "High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers," Chem. Mater., vol. 20, 2008.
[22]C. L. Chen, K. F. Chiu, H. J. Leu, and C. C. Chen, "Iron Hexacyanoferrate Based Compound Modified LiMn2O4 Cathodes for Lithium Ion Batteries," Journal of the Electrochemical Society, vol. 160, 2013.
[23]C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, "Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries," Nano Lett, vol. 11, Dec 14 2011.
[24]A. Safavi, S. H. Kazemi, and H. Kazemi, "Electrochemically deposited hybrid nickel–cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors," Electrochimica Acta, 2011.
[25]S. J. R. Prabakar and S. S. Narayanan, "Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach," Journal of Electroanalytical Chemistry, vol. 617, 2008.
[26]D. Asakura, M. Okubo, Y. Mizuno, T. Kudo, H. Zhou, K. Ikedo, et al., "Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability," The Journal of Physical Chemistry C, vol. 116, 2012.
[27]Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, "Prussian blue: a new framework of electrode materials for sodium batteries," Chem Commun (Camb), vol. 48, Jul 4 2012.
[28]C. D.Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, "The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes," Journal of The Electrochemical Society, vol. 159, 2012.
[29]M. D. Johnson, B. B. Lorenz, P. C. Wilkins, B. G. Lemons, B. Baruah, N. Lamborn, et al., "Switching off electron transfer reactions in confined media: reduction of [Co(dipic)2]- and [Co(edta)]- by hexacyanoferrate(II)," Inorg Chem, vol. 51, 2012.
[30]Q. Li, F. Lou, and D. Tang, "Biofunctional nanogold microsphere doped with Prussian blue nanoparticles for sensitive electrochemical immunoassay of cancer marker," Analytical Methods, vol. 6, 2014.
[31]D. Weidinger, D. J. Brown, and J. C. Owrutsky, "Transient absorption studies of vibrational relaxation and photophysics of Prussian blue and ruthenium purple nanoparticles," J Chem Phys, vol. 134, p. 124510, Mar 28 2011.
[32]F. Xu, H. He, C. Dun, Y. Liu, M.-x. Wang, Y. R. Qi Liua, et al., "Failure Investigation of LiFePO4 Cells under Overcharge Conditions," ECS Transactions, vol. 41 (39) 1-12, 2012.
[33]Y. Zhu, J. W. Wang, Y. Liu, X. Liu, A. Kushima, Y. Liu, et al., "In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation," Adv Mater, vol. 25, Oct 11 2013.
[34]S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro, and N. Kumagai, "Role of Alumina Coating on Li-Ni-Co-Mn-O Particles as Positive Electrode Material for Lithium-Ion Batteries," Chem. Mater., vol. 17, 2005.
[35]I. Yamada, T. Abe, Y. Iriyama, and Z. Ogumi, "Lithium-ion transfer at LiMn2O4 thin film electrode prepared by pulsed laser deposition," Electrochemistry Communications, vol. 5, 2003.
[36]Y. Mizunob, M. Okuboa, D. Asakuraa, T. Saitoa, Eiji Hosonoa, Y. Saitoa, et al., "Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte," Electrochimica Acta, vol. 63, 2012.
[37]M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. McDowell, R. A. Huggins, et al., "Full open-framework batteries for stationary energy storage," Nat Commun, vol. 5, 2014.
[38]C. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, "Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage," ACSNANO, vol. 6, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top