跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李政鴻
研究生(外文):Cheng-Hung Li
論文名稱:抗雜訊系統與低雜訊放大器
論文名稱(外文):Noise Decoupling System and Low Noise Amplifier
指導教授:盧奕璋
指導教授(外文):Yi-Chang Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:69
中文關鍵詞:低雜訊放大器抗雜訊主動電感雜訊指數旋相器米勒效應
外文關鍵詞:low noise amplifier (LNA)noise cancellationactive inductornoise figuregystorMiller effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
訊號在傳輸時,可能受到雜訊的影響,造成信號的失真,進而降低電路效能。雜訊來源除了有可能來自其他系統,也有可能系統本身內部產生。本論文首先探討各項雜訊的來源,並且建立基板模型以及電源模型,接著在力晶高壓製程上,完成了抗雜訊電路,其中包含有雜訊選擇、雜訊源以及抗雜訊系統。驗證方式分為兩種,首先藉由雜訊源產生的內部雜訊,紀錄有無抗雜訊系統下,基板雜訊以及電源雜訊大小的差異。另一種驗證方法為利用偏壓器來輸入外部雜訊,觀察雜訊抑制的情況。最後藉由雜訊計算公式,計算出雜訊抑制情況大約為40%左右。 其次,實現5.8G低雜訊放大器於0.35um CMOS製程上,並且結合主動電感以及抗雜訊應用。使用主動電感目的為降低晶片面積進而減少成本,抗雜訊應用則為降低低雜訊放大器的雜訊指數,讓電路有更好的效能。最後得到具有輸入匹配為-11dB、輸出匹配為-11dB、增益為18dB、雜訊指數為2.8dB、IIP3約為-4dBm、功率消耗為25mW的5.8G低雜訊放大器 最後實現8-12G的X頻段寬頻放大器,使用90nm CMOS製程並下針量測。電路設計為電阻並聯回授式並採用雜訊抵消方法降低放大器內部雜訊,即可降低低雜訊放大器的雜訊指數。量測結果得到在8-12G頻帶內,輸入匹配為-10dB以下,輸出匹配為-10dB以下,增益大約為11dB左右,雜訊指數為2.5-4,IIP3則為-7dBm左右,功率消耗為8mW的低雜訊放大器。

Noise usually causes signal distortion, thus degrading the circuit performance. In this thesis we discuss various sources of noise and the models of the substrate and power line at first. Then, a noise decoupling circuit is implemented using the PSC (Powerchip Semiconductor Corp.) high voltage process. The circuit has noise select, noise sources and the noise decoupling system. There are two types of experiments. First, on-chip noise sources are used to generate the internal noise. The magnitude of the substrate noise and power noise are measured with the noise decoupling system activated or deactivated. Then an external noise is applied through bias-T to observe the efficiency of noise suppression. There is about 40% reduction of noise. Secondly, a 5.8G low noise amplifier with an active inductor and noise decoupling system is implemented using 0.35um CMOS process. An active inductor is adopted to reduce chip area and costs. As to noise decoupling, it could reduce the noise figure of the LNA, so the circuit has better performance. The LNA exhibits input matching less than -11 dB, output matching less than -11 dB, 18 dB gain, 2.8 dB noise figure, -4 dBm IIP3, and 25 mW power consumption. Finally, an 8-12 GHz X-band broadband amplifier is implemented using 90 nm CMOS process. On-chip probing is used to measure the performance of the LNA. A shunt-feedback resistor and noise cancellation method are used in the amplifier designed to lower the noise figure. The LNA exhibits input matching less than -10 dB, output matching is less than -10 dB, 11dB gain, 2.5~4 dB noise figure, -7 dBm IIP3, and 8 mW power consumption.

致謝ii
口試委員審定書iii
中文摘要v
英文摘要vi
第一章 緒論1
第二章 雜訊模型及抗雜訊系統2
2.1簡介2
2.2 基底與電源雜訊模型的建立.6
2.3主動抗雜訊系統概念8
2.4架構實現10
2.5抗雜訊電路量測結果與討論14
第三章 低雜訊放大器設計原理26
3.1 簡介 26
3.2 基本概念27
3.2.1 S參數(s-parameter)與電路匹配(matching)28
3.2.2雜訊指數(noise figure, NF)29
3.2.3 穩定度(stability)31
3.2.4 1dB壓縮點(1dB compression point)32
3.2.5 輸入三階截斷點(input third-order intercept point, IIP3)33
3.3 低雜訊放大器基本電路架構34
第四章 低雜訊放大器耦合主動電感與抗雜訊系統36
4.1 主動電感簡介36
4.2 主動電感電路分析37
4.3 電路實現39
4.4 抗雜訊低雜訊放大器量測結果45
第五章 具抗雜訊寬頻低雜訊放大器51
5.1 簡介51
5.2 寬頻低雜訊放大器架構52
5.3 抗雜訊技術概念55
5.4電路實現結果57
5.5 量測結果58
第六章 結果與討論64
參考文獻65


[1] Ahmed Helmy, Substrate noise coupling in RFICS, 2008.
[2] 張存續,高速數位電路之電源完整性,電子月刊第九卷第二期,186-193,2月,2003。
[3] T. Tsukada, et al., ” An on-chip active decoupling circuit to suppress crosstalk in deep-submicron CMOS mixed-signal SoCs,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 67-79, Jan. 2005
[4] M. S. Peng, et al., “Study of substrate noise and techniques for minimization,” IEEE Journal of Solid-State Circuits, vol. 39,Issue 11, pp. 2080-2086 Nov. 2004.
[5] K. M. Fukuda, et al., “On-chip active guard band filters to suppress substrate-coupling noise in analog and digital mixed-signal integrated circuits,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 57-60, June. 1999.
[6] R. E. Vallee, et al., "A very highfrequency CMOS complementary folded cascade amplifier," IEEE J. of Solid-state Circuits, vo1.29, pp. 130-133, Feb. 1994.
[7] B. G. Song, et al., “A 1.8V self-biased complementary folded cascode amplifier,” IEEE Asia Pacific Conf., pp. 63–65, Aug. 1999.
[8] H. Sarbishaei, et al., “A High-Gain High-Speed Low-Power Class-AB Operational Amplifier,” Midwest Symp. Circuits and Systems, vol. 1, pp. 271-274, Aug. 2005.
[9] F. Dalena, et al., ” A Low-Power adaptive biasing CMOS Operational Amplifier with enhanced DC-Gain,” Microelectronics and Electronics, pp. 165-168, June, 2006.
[10] J. C. Huang, et al., ” A 2V 2.4 GHz fully integrated CMOS LNA,” IEEE Int. Symp. on Circuits and Systems, vol.4 pp.466-469, May. 2001.
[11] D. M. Pozar, Microwave Engineering, 2nd Edition, John Willey & Sons, 1998.
66
[12] G. Gonzaley, Microwave transistor amplifiers analysis and design, Prentice Hall, 1997
[13] Y. Lu, et al., “A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Transactions on Circuits and Systems I, Vol 53, pp.1683–1692, Aug. 2006.
[14] D. K. Shaeffer, et al., “A 1.5-V, 1.5 GHz CMOS low noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, pp.745-759, May, 1997.
[15] B. Razavi, et al., “Impact of distributed gate resistance on the performance of MOS devices,” in IEEE Transactions Circuits and Systems I: Fundamental Theory and Applications, vol. 41 , pp. 750–754, 1994.
[16] M. Danesh, et al., “A Q-factor enhancement technique for MIMC inductors,” IEEE Radio Frequency Integrated Circuits Symp., pp. 217–220, Aug. 2002.
[17] A. Pascht, et al., “A CMOS low noise amplifier at 2.4 GHz with active inductor load,” Topical Meeting on Silicon Monolithic Integrated Circuits RF Syst. ,Tech. ,Dig. ,pp. 1-5, 2001.
[18] Q. Zhuo, et al, “Programmable low noise amplifier with active-inductor load,” IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 365-368, 1998
[19] A. Thanachayanont, et al., “VHF CMOS integrated active inductor,” Electronics Letters, vol. 32, pp. 999-1000, 1996.
[20] T. H. Lee, The design of CMOS radio-frequency integrated circuits, Cambridge University Press, 1998.
[21] C. G. Sodini, et al., “The effect of high fields on MOS device and circuit performance,” IEEE Transactions on Electron Devices, vol. ED-31, Oct. 1984.
[22] B. Razavi, RF Microelectronics, Prentice Hall, NJ, 1998.
[23] A. Bevilacqua, et al., “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, pp. 2259–2268, Dec. 2004.
[24] F. Bruccoleri, et al., “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275-282, Feb. 2004.
[25] C. W. Kim, et al., “An ultra-wideband CMOS low noise amplifier for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, pp. 544–547, Feb. 2005.
[26] 本成和彥著,呂學士譯,無線通訊射頻晶片模組設計,全華圖書股份有限公司,台北縣,民國八十六年。
[27] A. J. Scholten, et al., “Noise modeling for RF CMOS circuit simulation,” IEEE Transactions on Electron Devices, vol. 50, pp. 618-632, Mar. 2003.
[28] K. Runge, et al., “On-chip matched 5.2 and 5.8 GHz differential LNAs fabricated using 0.35 μm CMOS technology,” Electronics Letters, vol. 35, pp.1899-1900, Oct. 1999.
[29] C. C. Tang, et al., “Low-voltage CMOS low-noise amplifier using planar-interleaved transformer,” Electronics Letters, vol. 37, pp. 497-498, Apr. 2001.
[30] R. C. Liu, et al., “A 5.8-GHz two-stage high-linearity low-voltage low noise amplifier in a 0.35-μm CMOS technology,” IEEE Radio Frequency Integrated Circuits Symp., pp. 221-224, June. 2002.
[31] Y. S. Wang, et al., “5.7 GHz low-power variable-gain LNA in 0.18 μm CMOS,” Electronics Letters, vol. 41, pp. 66 – 68, Jan. 2005.
[32] M. K. Raja, et al., “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuits Symp., pp. 439–442, 2005.
[33] M. Rajashekharaiah, et al., “A 5GHz LNA with new compact gain controllable active balun for ISM band applications,” Solid-State and Integrated Circuits Technology, vol. 2, pp.1252–1255, 2004.
[34] T. K. K. Tsang, et al., “Gain and frequency controllable sub 1 V 5.8 GHz CMOS LNA,” IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 795–798, Aug. 2002
[35] M. D. Tsai, et al., “A low-voltage fully integrated 4.5–6-GHz CMOS variable gain low noise amplifier,” European Microwave Conf., pp. 13–16, 2003.
[36] D. Linten, et al., “Low-power 5 GHz LNA and VCO in 90 nm RF CMOS,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 372-375, 2004.
[37] A. Bevilacqua, et al., “An ultra-wideband CMOS LNA for 3.1 to 10.6-GHz wireless receiver,” IEEE J. Solid- State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[38] C. F. Liao, et al., “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receiver,” IEEE Custom Integr. Circuits Conf., pp. 161–164, Sep. 2005.
[39] C.W. Kim, et al., “An ultra wideband CMOS low-noise amplifier for 3–5GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[40] F. Zhang, et al., “Low power programmable-gain CMOS distributed LNA for ultra-wide-band applications,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 78–81, 2006
[41] K. H. Chen, et al., “An ultra-wide-band 0.4–10 GHz LNA in 0.18 μm CMOS,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 3, March 2007
[42] C. S. Wang, et al., “A 90nm CMOS low noise amplifier using noise neutralizing for 3.1-10.6GHz UWB System,” IEEE J. Solid-State Circuits, pp. 251-254, Sept. 2006.
[43] R. C. Liu, et al., “A 0.6–22 GHz broadband CMOS distributed amplifier,” IEEE Radio Frequency Integrated Circuits Symp., pp. 103–106, June 2003.
[44] J. H. C. Zhan, et al., “A 5GHz resistive- feedback CMOS LNA for low-cost multi-standard applications,” IEEE ISSCC Dig. Tech. Papers, pp. 200–201, Feb. 2006.
[45] R. Ludwig, et al., RF circuit design: theory and applications, Prentice Hall, 2003.
[46] B. Razavi, Design of analog CMOS integrated circuits, McGraw Hill, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top