[1] Ahmed Helmy, Substrate noise coupling in RFICS, 2008.
[2] 張存續,高速數位電路之電源完整性,電子月刊第九卷第二期,186-193,2月,2003。[3] T. Tsukada, et al., ” An on-chip active decoupling circuit to suppress crosstalk in deep-submicron CMOS mixed-signal SoCs,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 67-79, Jan. 2005
[4] M. S. Peng, et al., “Study of substrate noise and techniques for minimization,” IEEE Journal of Solid-State Circuits, vol. 39,Issue 11, pp. 2080-2086 Nov. 2004.
[5] K. M. Fukuda, et al., “On-chip active guard band filters to suppress substrate-coupling noise in analog and digital mixed-signal integrated circuits,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 57-60, June. 1999.
[6] R. E. Vallee, et al., "A very highfrequency CMOS complementary folded cascade amplifier," IEEE J. of Solid-state Circuits, vo1.29, pp. 130-133, Feb. 1994.
[7] B. G. Song, et al., “A 1.8V self-biased complementary folded cascode amplifier,” IEEE Asia Pacific Conf., pp. 63–65, Aug. 1999.
[8] H. Sarbishaei, et al., “A High-Gain High-Speed Low-Power Class-AB Operational Amplifier,” Midwest Symp. Circuits and Systems, vol. 1, pp. 271-274, Aug. 2005.
[9] F. Dalena, et al., ” A Low-Power adaptive biasing CMOS Operational Amplifier with enhanced DC-Gain,” Microelectronics and Electronics, pp. 165-168, June, 2006.
[10] J. C. Huang, et al., ” A 2V 2.4 GHz fully integrated CMOS LNA,” IEEE Int. Symp. on Circuits and Systems, vol.4 pp.466-469, May. 2001.
[11] D. M. Pozar, Microwave Engineering, 2nd Edition, John Willey & Sons, 1998.
66
[12] G. Gonzaley, Microwave transistor amplifiers analysis and design, Prentice Hall, 1997
[13] Y. Lu, et al., “A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Transactions on Circuits and Systems I, Vol 53, pp.1683–1692, Aug. 2006.
[14] D. K. Shaeffer, et al., “A 1.5-V, 1.5 GHz CMOS low noise amplifier,” IEEE J. of Solid-State Circuits, vol. 32, pp.745-759, May, 1997.
[15] B. Razavi, et al., “Impact of distributed gate resistance on the performance of MOS devices,” in IEEE Transactions Circuits and Systems I: Fundamental Theory and Applications, vol. 41 , pp. 750–754, 1994.
[16] M. Danesh, et al., “A Q-factor enhancement technique for MIMC inductors,” IEEE Radio Frequency Integrated Circuits Symp., pp. 217–220, Aug. 2002.
[17] A. Pascht, et al., “A CMOS low noise amplifier at 2.4 GHz with active inductor load,” Topical Meeting on Silicon Monolithic Integrated Circuits RF Syst. ,Tech. ,Dig. ,pp. 1-5, 2001.
[18] Q. Zhuo, et al, “Programmable low noise amplifier with active-inductor load,” IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 365-368, 1998
[19] A. Thanachayanont, et al., “VHF CMOS integrated active inductor,” Electronics Letters, vol. 32, pp. 999-1000, 1996.
[20] T. H. Lee, The design of CMOS radio-frequency integrated circuits, Cambridge University Press, 1998.
[21] C. G. Sodini, et al., “The effect of high fields on MOS device and circuit performance,” IEEE Transactions on Electron Devices, vol. ED-31, Oct. 1984.
[22] B. Razavi, RF Microelectronics, Prentice Hall, NJ, 1998.
[23] A. Bevilacqua, et al., “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, pp. 2259–2268, Dec. 2004.
[24] F. Bruccoleri, et al., “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275-282, Feb. 2004.
[25] C. W. Kim, et al., “An ultra-wideband CMOS low noise amplifier for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, pp. 544–547, Feb. 2005.
[26] 本成和彥著,呂學士譯,無線通訊射頻晶片模組設計,全華圖書股份有限公司,台北縣,民國八十六年。
[27] A. J. Scholten, et al., “Noise modeling for RF CMOS circuit simulation,” IEEE Transactions on Electron Devices, vol. 50, pp. 618-632, Mar. 2003.
[28] K. Runge, et al., “On-chip matched 5.2 and 5.8 GHz differential LNAs fabricated using 0.35 μm CMOS technology,” Electronics Letters, vol. 35, pp.1899-1900, Oct. 1999.
[29] C. C. Tang, et al., “Low-voltage CMOS low-noise amplifier using planar-interleaved transformer,” Electronics Letters, vol. 37, pp. 497-498, Apr. 2001.
[30] R. C. Liu, et al., “A 5.8-GHz two-stage high-linearity low-voltage low noise amplifier in a 0.35-μm CMOS technology,” IEEE Radio Frequency Integrated Circuits Symp., pp. 221-224, June. 2002.
[31] Y. S. Wang, et al., “5.7 GHz low-power variable-gain LNA in 0.18 μm CMOS,” Electronics Letters, vol. 41, pp. 66 – 68, Jan. 2005.
[32] M. K. Raja, et al., “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuits Symp., pp. 439–442, 2005.
[33] M. Rajashekharaiah, et al., “A 5GHz LNA with new compact gain controllable active balun for ISM band applications,” Solid-State and Integrated Circuits Technology, vol. 2, pp.1252–1255, 2004.
[34] T. K. K. Tsang, et al., “Gain and frequency controllable sub 1 V 5.8 GHz CMOS LNA,” IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 795–798, Aug. 2002
[35] M. D. Tsai, et al., “A low-voltage fully integrated 4.5–6-GHz CMOS variable gain low noise amplifier,” European Microwave Conf., pp. 13–16, 2003.
[36] D. Linten, et al., “Low-power 5 GHz LNA and VCO in 90 nm RF CMOS,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 372-375, 2004.
[37] A. Bevilacqua, et al., “An ultra-wideband CMOS LNA for 3.1 to 10.6-GHz wireless receiver,” IEEE J. Solid- State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[38] C. F. Liao, et al., “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receiver,” IEEE Custom Integr. Circuits Conf., pp. 161–164, Sep. 2005.
[39] C.W. Kim, et al., “An ultra wideband CMOS low-noise amplifier for 3–5GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[40] F. Zhang, et al., “Low power programmable-gain CMOS distributed LNA for ultra-wide-band applications,” VLSI Circuits Dig. of Tech. Papers Symp., pp. 78–81, 2006
[41] K. H. Chen, et al., “An ultra-wide-band 0.4–10 GHz LNA in 0.18 μm CMOS,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 3, March 2007
[42] C. S. Wang, et al., “A 90nm CMOS low noise amplifier using noise neutralizing for 3.1-10.6GHz UWB System,” IEEE J. Solid-State Circuits, pp. 251-254, Sept. 2006.
[43] R. C. Liu, et al., “A 0.6–22 GHz broadband CMOS distributed amplifier,” IEEE Radio Frequency Integrated Circuits Symp., pp. 103–106, June 2003.
[44] J. H. C. Zhan, et al., “A 5GHz resistive- feedback CMOS LNA for low-cost multi-standard applications,” IEEE ISSCC Dig. Tech. Papers, pp. 200–201, Feb. 2006.
[45] R. Ludwig, et al., RF circuit design: theory and applications, Prentice Hall, 2003.
[46] B. Razavi, Design of analog CMOS integrated circuits, McGraw Hill, 2001.