跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭民奇
研究生(外文):Min-Chi Cheng
論文名稱:36 Gbit/s 16-QAM正交分頻多工直調注入鎖定弱腔雷射二極體傳輸於高密度分波多工被動光纖網路
論文名稱(外文):36 Gbit/s 16-QAM OFDM data transmission in DWDM-PON with a directly modulated and injection-locked WRC-FPLD
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
口試委員:呂海涵陳智弘彭朋群
口試委員(外文):Hai-Han LuJye-hong ChenPeng-Chun Peng
口試日期:2014-05-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:72
中文關鍵詞:弱腔雷射二極體直接調變注入鎖定TO-can封裝正交幅度調制正交分頻多工
外文關鍵詞:Weak-resonant-cavityFPLDdirect modulationTO-can packageinjection-lockingQAM-OFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了要建構一個高速且低成本的光纖網路,將多載波訊號格式結合低成本之光源應用於高密度分波多工被動網路(DWDM-PON)將是未來重要的趨勢。我們將一端面反射率降低至1%之弱共振腔法布里-珀羅雷射二極體(WRC-FPLD)應用於DWDM-PON,並利用注入鎖定提升WRC-FPLD的弛張震盪頻率並降低其相對強度雜訊(RIN),成功地直接調變正交幅度調制 (QAM) 正交分頻多工 (OFDM) 之調變格式並達到其調變速率為20 Gbit/s。當注入光功率由 -12 dBm增加到 -3 dBm 時,可以有效地降低WRC-FPLD的臨界電流,使其弛張震盪頻率由5 GHz提升至7.5 GHz. 這會同時造成在信號調變頻寬中的相對雜訊強度下降,並會將訊號雜訊比(SNR)由16 dB提升至20 dB,使得其16-QAM OFDM信號傳輸之誤碼率(BER)可被有效地降低。藉由利用預先斜率補償 (pre-leveling)的方法補償雷射自然頻率響應的衰減,可進一步地提升傳輸品質。
為了要更進一步地降低注入光源在整個傳輸系統架構中的成本,我們提出了部分同調光源WRC-FPLD注入WRC-FPLD之主從注入架構,達成20 Gbit/s之16-QAM OFDM於25公里單模光纖傳輸,藉由主從注入架構,16-QAM OFDM傳輸25公里單模光纖後,其誤碼率可由1.4x10^-1被降低至 1.2x10^-3,經由預先斜率補償技術可進一步降低誤碼率至2.1x10^-4,在此條件操作下,可實現28個高密度被動光纖網路通道,且各通道之誤碼率皆小於前向錯誤更正之要求 (FEC-limit, BER= 3.8

To build up a high-speed and low-cost optical access network, it is necessary to fuse a multiple carrier data format and a colorless transmitter based universal into the dense wavelength division multiplexing passive optical network (DWDM-PON) in the near future. The directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream at its total bit rate up to 20 Gbit/s is demonstrated by up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under injection-locking. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of transmitted 16-QAM-OFDM data. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved.
To further reduce the cost of the injection-locking master source, the partially coherent WRC-FPLD pair under master-to-slave injection-locking operation is demonstrated for optical 16-QAM OFDM transmission at 20 Gbit/s over 25-km SMF in DWDM-PON with 28 affordable channels achieving BER of below FEC-limit. After master-to-slave injection-locking, the BER of the 16-QAM OFDM data stream under back-to-back and 25-km transmissions can be improved from 3.3x10^-3 to 2.1x10^-5 and from 1.4x10^-1 to 1.2x10^-3, respectively. With OFDM subcarrier pre-leveling, the BER of 16-QAM OFDM data transmitted by the master-to-slave injection-locked WRC-FPLD over 25-km transmission is further improved from 1.2x10^-3 to 2.1x10^-4, concurrently enabling the 28 channel transmissions at 20 Gb/s with BER below FEC-limit of 3.8x10^-3.
Moreover, the overall frequency bandwidth of the TO-can packaged colorless WRC-FPLD can be extended from 5 to 9 GHz by replacing the package of the colorless WRC-FPLD from a typical 4-GHz TO-56-can to a 10-GHz TO-56-can. By injection-locking the WRC-FPLD based colorless transmitter packaged in a 10-GHz TO-56-can, the premier demonstration on directly modulated of 16 QAM OFDM transmission up to 36 Gbit/s per channel is demonstrated. The compromised optimization on enlarged modulation bandwidth and declined throughput power of the WRC-FPLD under strong injection-locking is considered, and the trade-off between the RIN suppression and the frequency response degradation with detuning the injection level is discussed. By pre-amplifying the directly modulated optical 16-QAM OFDM data stream covering a bandwidth up to 9 GHz with total raw bit rate of 36 Gbit/s, the receiving bit error rate (BER) under back-to-back transmission can be further reduced from 3.4x10^-3 to 2.1x10^-4. This enables the 36-Gbit/s 16-QAM OFDM transmission over 25-km SMF with its BER matching the FEC criterion at a receiving power of -3 dBm.


口試委員會審定書..............................................#
誌謝.......................................................i
中文摘要...................................................ii
ABSTRACT..................................................iv
CONTENTS..................................................vi
LIST OF FIGURES...........................................ix
Chapter 1 Introduction...............................1
1.1 Overview of transmitters in DWDM-PON..............1
1.2 Motivation........................................2
1.2.1 High-speed transmission based on colorless transmitter...............................................2
1.2.2 Cost-effective injection-locked scheme in DWDM-PON.......................................................3
1.2 Thesis Architecture...............................5
Chapter 2 Up-shifting the relaxation oscillation induced relative intensity noise spectrum of a directly modulated and injection-locked WRC-FPLD for 20-Gbit/s 16-QAM OFDM transmission..........................................6
2.1 Introduction.......................................6
2.2 Experimental Setup.................................6
2.3 Results and Discussions............................9
2.3.1 Theories of the injection-locked WRC-FPLD..........9
2.3.2 The enhancement of the signal-to-noise ratio (SNR) by injection-locking......................................14
2.3.3 The BER reduction of the 16-QAM OFDM data carried by the injection-locked WRC-FPLD.............................16
2.3.4 Directly modulating a WRC-FPLD with pre-leveled OFDM data......................................................19
2.4 Summary...........................................21
Chapter 3 Master-to-slave injection-locked WRC-FPLD pair with 28 DWDM-PON channels for 16-QAM OFDM transmission at 20 Gbit/s over 25-km SMF...............................23
3.1 Introduction......................................23
3.2 Experimental setup................................24
3.3 Results and discussion............................26
3.3.1 The spectra of the master, slave and injection-locked slave WRC-FPLD.....................................26
3.3.2 The comparison between WRCFPLD-to-WRCFPLD pair and DFBLD-to-WRCFPLD pair.....................................29
3.3.3 Wavelength locking range of the injection-locked WRC-FPLD..................................................30
3.3.3 Pre-leveling for back-to-back and 25-km SMF 16-QAM OFDM transmission.........................................31
3.3.4 BER vs. receiving power anaysis of the 16/64-QAM OFDM transmission.........................................33
3.3.5 Multi-channels demonstration of master-to-slave injection-locked WRC-FPLD pair for transmitting the 16-QAM OFDM signal...............................................34
3.4 Summary...........................................37
Chapter 4 Directly modulating a 10-GHz TO-56-can packaged WRC-FPLD with 16-QAM OFDM at 36 Gbit/s over 25-km SMF.......................................................38
4.1 Introduction......................................38
4.2 Experimental Setup................................39
4.3 Results and Discussions...........................43
4.3.1 Frequency response of the injection-locked WRC-FPLD......................................................43
4.3.2 Direct 16-QAM OFDM encoding of an injection-locked WRC-FPLD packaged with a 10-GHz TO-56-can.................47
4.3.3 3-D BER contour for finding the optimized operating point of the injection-locked WRC-FPLD....................51
4.3.4 Pre-amplified 16-QAM OFDM data transmitted by an injection-locked and 10-GHz TO-can packaged WRC-FPLD......55
4.4 Summary...........................................58
Chapter 5 Conclusion................................60
REFERENCE.................................................62


1. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10, 1334-1336 (1996).
2. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks” J. Lightwave Technol. 18, 125-143 (2000).
3. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl,“An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 16, 1546-1559 (1998).
4. M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne,“8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon.Technol. Lett. 11, 1114-1116 (1999).
5. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
6. A. Banerjee, Y. Park, F. Clarke, H Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737-758 (2005).
7. E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett. 42, 299-301 (2006).
8. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12, 162-169 (2006).
9. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).
10. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express 16, 4520-4528 (2008).
11. C. W. Chow, C. S. Wong, Member, IEEE, and H. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry-Perot Laser Diodes” IEEE J. Sel. Top. Quantum Electron. 10, 363-370 (2004).
12. Y. S. Liao, H. C. Kuo, Y. J. Chen, G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express 17, 4859-4867 (2009).
13. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry-Perot laser diode with front-facet re&;#64258;ectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27, 2779-2785 (2009).
14. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry-Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28, 2925-2932 (2010).
15. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett., 42, 587-589 (2006).
16. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131-138 (2007).
17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16, 841-859 (2008).
18. T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener Phase Noise,” IEEE Trans. Commun. 43, 191-193 (1995).
19. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12, 418-424, (1994).
20. G.-R. Lin, T. K. Cheng, Y. H. Lin, G. C. Lin, and H. L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron. 45, 1106-1112 (2009).
21. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electon. 44, 90-99 (2008).
22. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Quantum Electron. 9, 1386-1393 (2003).
23. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709-711 (1995).
24. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A Weak-Resonant-Cavity Fabry-Perot Laser Diode With Injection-Locking Mode Number-Dependent Transmission and Noise Performances,” J. of Lightwave Technol. 28, 1349-1355 (2010).
25. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071-20077 (2012).
26. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin*, “Coherent Injection-Locking of Long-Cavity Colorless Laser Diodes with Low Front-Facet Reflectance for DWDM-PON Transmission”, IEEE J. Sel. Top. Quantum Electron. 19, 1501011 (2013).
27. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDMPON using CW injection-locked Fabry-Perot laser diodes,” Opt. Express 15, 2953-2962, (2007).
28. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794-796 (2008).
29. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22, 745-747 (2010).
30. G.-R. Lin, T. K. Cheng, Y. C. Chi, G. C. Lin, H. L. Wang, and Y. H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17, 17739-17746 (2009).
31. C.-L. Ying, H.-H. Lu, S.-J. Tzeng, H.-L. Ma, Y.-W. Chuang, “ A hybrid transport system based on mutually injection-locked Fabry-Perot laser diodes,” Opt. Commum. 276, 87-92 (2007).
32. K.-M. Choi, J.-S. Baik, and C.-H. Lee, “ Broad-band light source using mutually injected Fabry-Pe’rot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett. 17, 2529-2531 (2008).
33. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded re&;#64258;ective SOAs,” IEE Electron. Lett. 37, 1181-1182 (2001).
34. T. Y. Kim, and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett. 18, 2350-2352 (2006).
35. I-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21, 8622-8629 (2013).
36. M.-C. Cheng, Y.-C. Li, S.-Y. Lin, Y.-C. Chi, and G.-R. Lin, “Directly modulating a long weak-resonant-cavity laser diode at limited bandwidth of 5 GHz with pre-leveled 16-QAM OFDM transmission at 20 Gb/s,” in 2013 Optical Fiber Communication Conference, 2013
37. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982).
38. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron. 21, 784-793 (1985).
39. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron. 39, 1196-1204 (2003)
40. A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers” IEEE J. Quantum Electron. 39, 438-447 (2003)
41. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express 12, 4449-4456 (2004)
42. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814-1818 (1985).
43. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982).
44. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1997), Chap. 3.
45. A. Ebberg, F. Auracher, and B. Borchert, “10 Gbit/s transmission using directly modulated uncooled MQW ridge waveguide DFB lasers in TO package,” Electron. Lett. 36, 1476-1477 (2000).
46. Y. Sunaga, R. Takahashi, T. Tokoro, and M. Kobayashi, “2 Gbit/s small form factor &;#64257;ber-optic transceiver for single mode optical &;#64257;ber,” IEEE Trans. Adv. Packaging 23, 176-181 (2000).
47. C. C. Lin, Y. C. Chi, H. C. Kuo, P. C. Peng, C. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical-pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightw. Technol. 29, 830-841, (2011).
48. Chen, C., N. H. Zhu, S. Jian Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97-103 (2007).
49. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “Compact TO-can header with bandwidth excess 40 GHz,” J. Lightw. Technol. 29, 2538-2544 (2011).
50. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “A 25 Gbit/s transmitter optical sub-assembly package employing cost-effective TO-can materials and processes,” J. Lightw. Technol. 30, 834-840 (2012).
51. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31, 28-35 (2013).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top