|
1. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10, 1334-1336 (1996). 2. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks” J. Lightwave Technol. 18, 125-143 (2000). 3. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl,“An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 16, 1546-1559 (1998). 4. M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne,“8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon.Technol. Lett. 11, 1114-1116 (1999). 5. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001). 6. A. Banerjee, Y. Park, F. Clarke, H Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4, 737-758 (2005). 7. E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett. 42, 299-301 (2006). 8. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12, 162-169 (2006). 9. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 17, 1579-1581 (2005). 10. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express 16, 4520-4528 (2008). 11. C. W. Chow, C. S. Wong, Member, IEEE, and H. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry-Perot Laser Diodes” IEEE J. Sel. Top. Quantum Electron. 10, 363-370 (2004). 12. Y. S. Liao, H. C. Kuo, Y. J. Chen, G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express 17, 4859-4867 (2009). 13. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry-Perot laser diode with front-facet re&;#64258;ectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27, 2779-2785 (2009). 14. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry-Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28, 2925-2932 (2010). 15. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett., 42, 587-589 (2006). 16. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131-138 (2007). 17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16, 841-859 (2008). 18. T. Pollet, M. Van Bladel, M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener Phase Noise,” IEEE Trans. Commun. 43, 191-193 (1995). 19. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12, 418-424, (1994). 20. G.-R. Lin, T. K. Cheng, Y. H. Lin, G. C. Lin, and H. L. Wang, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron. 45, 1106-1112 (2009). 21. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electon. 44, 90-99 (2008). 22. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Quantum Electron. 9, 1386-1393 (2003). 23. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709-711 (1995). 24. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A Weak-Resonant-Cavity Fabry-Perot Laser Diode With Injection-Locking Mode Number-Dependent Transmission and Noise Performances,” J. of Lightwave Technol. 28, 1349-1355 (2010). 25. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071-20077 (2012). 26. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin*, “Coherent Injection-Locking of Long-Cavity Colorless Laser Diodes with Low Front-Facet Reflectance for DWDM-PON Transmission”, IEEE J. Sel. Top. Quantum Electron. 19, 1501011 (2013). 27. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDMPON using CW injection-locked Fabry-Perot laser diodes,” Opt. Express 15, 2953-2962, (2007). 28. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794-796 (2008). 29. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22, 745-747 (2010). 30. G.-R. Lin, T. K. Cheng, Y. C. Chi, G. C. Lin, H. L. Wang, and Y. H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17, 17739-17746 (2009). 31. C.-L. Ying, H.-H. Lu, S.-J. Tzeng, H.-L. Ma, Y.-W. Chuang, “ A hybrid transport system based on mutually injection-locked Fabry-Perot laser diodes,” Opt. Commum. 276, 87-92 (2007). 32. K.-M. Choi, J.-S. Baik, and C.-H. Lee, “ Broad-band light source using mutually injected Fabry-Pe’rot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett. 17, 2529-2531 (2008). 33. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded re&;#64258;ective SOAs,” IEE Electron. Lett. 37, 1181-1182 (2001). 34. T. Y. Kim, and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett. 18, 2350-2352 (2006). 35. I-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21, 8622-8629 (2013). 36. M.-C. Cheng, Y.-C. Li, S.-Y. Lin, Y.-C. Chi, and G.-R. Lin, “Directly modulating a long weak-resonant-cavity laser diode at limited bandwidth of 5 GHz with pre-leveled 16-QAM OFDM transmission at 20 Gb/s,” in 2013 Optical Fiber Communication Conference, 2013 37. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982). 38. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor lasers with external light injection,” IEEE J. Quantum Electron. 21, 784-793 (1985). 39. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity Resonance Shift and Bandwidth Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE J. Quantum Electron. 39, 1196-1204 (2003) 40. A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers” IEEE J. Quantum Electron. 39, 438-447 (2003) 41. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express 12, 4449-4456 (2004) 42. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814-1818 (1985). 43. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982). 44. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1997), Chap. 3. 45. A. Ebberg, F. Auracher, and B. Borchert, “10 Gbit/s transmission using directly modulated uncooled MQW ridge waveguide DFB lasers in TO package,” Electron. Lett. 36, 1476-1477 (2000). 46. Y. Sunaga, R. Takahashi, T. Tokoro, and M. Kobayashi, “2 Gbit/s small form factor &;#64257;ber-optic transceiver for single mode optical &;#64257;ber,” IEEE Trans. Adv. Packaging 23, 176-181 (2000). 47. C. C. Lin, Y. C. Chi, H. C. Kuo, P. C. Peng, C. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical-pulse modulation of a TO-can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightw. Technol. 29, 830-841, (2011). 48. Chen, C., N. H. Zhu, S. Jian Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97-103 (2007). 49. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “Compact TO-can header with bandwidth excess 40 GHz,” J. Lightw. Technol. 29, 2538-2544 (2011). 50. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “A 25 Gbit/s transmitter optical sub-assembly package employing cost-effective TO-can materials and processes,” J. Lightw. Technol. 30, 834-840 (2012). 51. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31, 28-35 (2013).
|