|
1.G.F. Hewitt, G.L Shires, Y.V Polezhaev, International Encyclopedia of Heat and Mass Transfer, CRC Press, New York, 1997, p. 1044. 2.B. Wilhelmsson, Consider spiral heat exchangers for fouling application, Hydrocarbon Process 84 (7) (2005) 81-83. 3.T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker, New York, 2000, p. 5 4.A.B. Jarzębski, Dimensioning of spiral heat exchangers to give minimum costs, ASME J. Heat Transfer 106 (3) (1984) 633-637. 5.D. Wu, Geometric calculations for the spiral heat exchanger, Chem. Eng. Technol. 26 (5) (2003) 592–598. 6.A.M. Angelo, Spiral plate heat exchangers: sizing units for cooling non-Newtonian slurries, Chem. Eng. (May 2010) 44-49. 7.M. Bidabadi, A.K. Sadaghiani, A.V. Azad, Spiral heat exchanger optimization using genetic algorithm, Sci. Iran., Transaction B: Mech. Eng. 20 (2013) 1445-1454. 8.M. Picón-Núñez, G.T. Polley, G. Martínez-Rodríguez, Graphical tool for the preliminary design of compact heat exchangers, App. Therm. Eng. 61 (1) (2013) 36-43. 9.M. Picón-Núñez, L. Canizalez-Dávalos, G. Martínez-Rodríguez, G.T. Polley, Shortcut design approach for spiral heat exchangers, Food Bioprod. Process 85 (4) (2007) 322-327. 10.M. Picón-Núñez, L. Canizalez-Dávalos, J.M. Medina-Flores, Alternative sizing methodology for compact heat exchangers of the spiral type, Heat Transfer Eng. 30 (9) (2009) 744–750. 11.P.E. Minton, Designing spiral-plate heat exchanger, Chem. Eng. (May 1970) 103-112. 12.K.M. Bailey, Understand spiral heat exchangers, Chem. Eng. Process 90 (5) (1994) 59–63. 13.T. Trom, Use spiral plate exchangers for various applications, Hydrocarbon Process 74 (5) (1995) 73-80. 14.M.R. Haque, Minimizing fouling in spiral heat exchangers at a BCTMP mill, Pulp & Paper Canada 108 (4) (2007) 35-44. 15.M.R. Strenger, S.W. Churchill, W.B. Retallik, Operational characteristics of a double-spiral heat exchanger for the catalytic incineration of contaminated air, Ind. Eng. Chem. Res. 29 (9) (1990) 1977–1984. 16.M.J. Targett, W.B. Retallick, S.W. Churchill, Solutions in closed form for a double-spiral heat exchanger, Ind. Eng. Chem. Res. 31 (3) (1992) 658-669. 17.K. Chowdhury, H. Linkmeyer, M.K. Bassiouny, H. Martin, Analytical studies on the temperature distribution in spiral plate heat exchangers: Straightforward design formulate for efficiency and mean temperature difference, Chem. Eng. Process. 19 (1985) 183-190. 18.H. Martin, K. Chowdhury, H. Linkmeyer, M.K. Bassiouny, Straightforward design formulate for efficiency and mean temperature difference in spiral plate heat exchangers, Proceedings of the Eighth International Heat Transfer Conference, San Francisco, Vol. 6 (1986) 2793-2797. 19.Martin, H., Heat Exchangers, Hemisphere, Washington DC, 1992, pp. 73–82. 20.J.C. Ho, N.E. Wijeysundera, S. Rajasekar, T.T. Chandratilleke, Performance of a compact, spiral-coil heat exchanger, Heat Recovery Systems & CHP 15 (5) (1995) 457–468. 21.N.E. Wijeysundera, J.C. Ho, S. Rajasekar, The effectiveness of a spiral coil heat exchanger, Int. Commun. Heat Mass Transfer 23 (5) (1996) 623-631. 22.P. Naphon, S. Wongwises, An experimental study on the in-tube convective heat transfer coefficient in a spiral coil heat exchanger, Int. Commun. Heat Mass Transfer 29 (6) (2002) 797-809. 23.M. Adamski, Heat transfer correlations and NTU number for the longitudinal flow spiral recuperators, Appl. Therm. Eng. 29 (2-3) (2009) 591–596. 24.T.J. Rennie, V.G.S. Raghavan, Numerical studies of a double-pipe helical heat exchanger, Appl. Therm. Eng. 26 (11-12) (2006) 1266-1273. 25.Bes, Th., Eine methode der thermischen berechnung von gegen-und gleichstrom-spiralwärmeaustauschern, Wärme-und Stoffübertragung 21 (5) (1987) 301-309. 26.Th. Bes, W. Roetzel, Distribution of heat flux density in spiral heat exchangers, Int. J. Heat Mass Transfer 35 (6) (1992) 1331–1347. 27.Th. Bes, W. Roetzel, Approximate theory of spiral heat exchanger, Design and Operation of Heat Exchangers: Proceedings of the EUROTHERM Seminars No. 18, Springer-Verlag, Berlin, 1991, pp. 223–232. 28.Th. Bes, W. Roetzel, Thermal theory of the spiral heat exchanger, Int. J. Heat Mass Transfer 36 (3) (1993) 765–773. 29.J.Y. San, G.S. Lin, K.L. Pai, Performance of a serpentine heat exchanger: Part I -Effectiveness and heat transfer characteristics, Appl. Therm. Eng. 29 (14-15) (2009) 3081-3087. 30.J.Y. San, C.H. Hsu, S.H. Chen, Heat transfer characteristics of a helical heat exchanger, Appl. Therm. Eng. 39 (14-15) (2012) 114-120. 31.L. M. Kovalenko, L. V. Oleinik, Investigation of heat transfer and hydraulic resistance of a spiral heat exchanger, Chem. Petrol. Eng. 10 (10) (1974) 893-894. 32.J. F. Devois , J. F. Durastanti, B. Martin, Numerical modelling of the spiral plate heat exchanger, J. Therm. Anal. 44 (2) (1995) 305-312. 33.L.C. Burmeister, Effectiveness of a spiral-plate heat exchanger with equal capacitance rates, ASME J. Heat Transfer 128 (3) (2006) 295-301. 34.Z.Y. Munir, Numerical investigation of thermal effectiveness of spiral-plate heat exchangers, Master thesis, University of Kansas, Lawrence, 2006. 35.M.W. Egner, L.C. Burmeister, Heat transfer for laminar flow in spiral ducts of rectangular cross section, ASME J. Heat Transfer 127 (3) (2005) 352-356. 36.M.W. Egner, L.C. Burmeister, Laminar flow and heat transfer in spiral ducts of rectangular cross section, ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Charlotte NC, Paper No. HT-FED2004-56053 (2004) 175-184. 37.R.Z. Wang, J.Y. Wu, Y.X. Xu, Y. Teng, W. Shi, Experiment on a continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers, Appl. Therm. Eng. 18 (1-2) (1998) 13-23. 38.R.Z. Wang, J.Y. Wu, Y.X. Xu, A continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers: Improvements. ASME. J. Sol. Energy Eng. 121 (1) (1999) 14-19. 39.S. Maruyama, T. Aoki, K. Igarashi, S. Sakai, Development of a high efficiency radiation converter using a spiral heat exchanger, Energy 30 (2-4) (2005) 359-371. 40.K. Yan, P.Q. Ge, Y.C. Su, H.T. Meng, Numerical simulation on heat transfer characteristic of conical spiral tube bundle, Appl. Therm. Eng. 31 (2-3) (2011) 284-292. 41.V. Vijayan and A. Gupta, Heat transfer comparison between Archimedean and rectangular spiral heat exchangers for mesoscale combustors, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Florida, Paper No. AIAA 2009-254 (2009). 42.F.A. McClintock, The design of heat exchangers for minimum irreversibility, Winter ann. Meeting of the ASME, Paper No. 51-A-108 (1951). 43.A. Bejan, Second-law analysis in heat transfer, Energy 5 (8-9) (1980) 720-732. 44.A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transfer 15 (1982) 1-58. 45.A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys. 79 (3) (1996) 1191–1218. 46.J.Y. San, W.M. Worek, Z. Lavan, Second-law analysis of a two- dimensional regenerator, Energy 12 (6) (1987) 485-496. 47.P. Naphon, Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger, Int. Commun. Heat Mass., 33 (2006) 1029–1041. 48.J.Y. San, C.L. Jan, Second-law analysis of a wet cross flow heat exchanger, Energy 25 (2000) 939-955. 49.S. Sarangi, K. Chowdhury, On the generation of entropy in a counter-flow heat exchanger, Cryogenics 22 (1982) 63–65. 50.A. Gupta, S.K. Das, Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid, Energy 32 (2007) 664–672. 51.J.Y. San, K.L. Pai, Performance of a serpentine heat exchanger: Part II-Second-law efficiency, Appl. Therm. Eng. 29 (2009) 3088-3093. 52.S.Y. Wu, X.F. Yuan, Y.R. Li, L. Xiao, Energy transfer effectiveness on heat exchanger for finite pressure drop, Energy 32 (2007) 2110-2120. 53.D.F. Ruan, X.F Yuan, S.Y. Wu, Y.R. Li, Exergy effectiveness analysis of three-fluid heat exchanger, J. Supercond. Nov. Magn. 23 (6) (2010) 1127-1131. 54.J.Y. San, Second-law performance of heat exchangers for waste heat recovery, Energy 35 (5) (2010) 1936-1945. 55.H. Hadi, P. Mohsen, D. Mahmoud, Control of free convection and entropy generation in inclined porous media, Heat Transfer Eng. 33 (6) (2012) 565-573. 56.A.S. Kalogirou, S. Karellas, V. Badescu, K. Braimakis, Exergy analysis on solar thermal systems: A better understanding of their sustainability, Renew. Energ. (2015) http://dx.doi.org/10.1016/j.renene.2015.05.037. 57.Ö. Kaşka, Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry, Energ. Convers. Manage. 77 (2014) 108-117. 58.G.B. Thomas, M.D. Weir, J. Hass, Thomas'' Calculus, 12th edition, Addison Wesley, Boston, 2009, p. 637. 59.J.D. Lawrence, A Catalog of Special Plane Curves, Dover Publications, New York, 1972, p. 186. 60.E.W. Weisstein, Archimedes'' Spiral, MathWorld - a Wolfram Web Resource, http://mathworld.wolfram.com/ArchimedesSpiral.html, 2014. 61.D.K. Nguyen, Heat Transfer Effectiveness and Exergy Recovery Effectiveness of a Spiral Heat Exchanger, (Master thesis) National Chung Hsing University, Taiwan, ROC, 2011. 62.A.F. Mills, Heat Transfer, Richard D. Irwin, Inc., 1992. 63.F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Foundations of Heat Transfer, sixth ed., John Wiley & Sons, Singapore, 2013. 64.M.N. Ozisik, Heat Conduction, John Wiley, 1980. 65.R.E. Sonntag, C. Borgnakke, G.J.V Wylen, Fundamentals of Thermodynamics, 6th edition, John Wiley and Sons, 2003. 66.F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Introduction to Heat Transfer, fifth ed., John Wiley & Sons, Singapore, 2007. 67.S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-8. 68.M.N. özisik, R.M. Cotta, W.S. Kim, Heat transfer in turbulent forced convection between parallel-plates, Can. J. Chem. Eng. 67 (5) (1989) 771-776. 69.M.S. Bhatti and R.K. Shah, Turbulent and transition flow convective heat transfer in ducts, Chapter 4 in Handbook of Single-phase Convective Heat Transfer, edited by S. Kakaç, R.K. Shah and W. Aung, John Wiley, Network, 1987. 70.G.K. Filonenko, Hydraulic resistance in pipes, Teploenergetica 1 (4) (1954) 40-44. 71.V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16 (2) (1976) 359-368.
|