跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮德勸
研究生(外文):Duc-Khuyen Nguyen
論文名稱:具固體熱傳導之一個渦捲式熱交換器之熱傳特性
論文名稱(外文):Heat Transfer Characteristics of a Spiral Heat Exchanger with Solid Heat Conduction Effect
指導教授:沈君洋
指導教授(外文):Jung-Yang San
口試委員:駱文傑陳石法陳志敏盧昭暉
口試委員(外文):Win-Jet LuoShih-Fa ChenJerry-Min ChenJau-Huai Lu
口試日期:2016-01-20
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:236
中文關鍵詞:渦捲式熱交換器比爾數熱傳效率熱傳單位指數固體熱傳導有效功熱力學第二定律分析
外文關鍵詞:spiral heat exchangerBiot numbereffectivenessNTUsolid heat conductionexergysecond-law analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究探討一個逆向流之渦捲式熱交換器中徑向與渦流向(流體流動方向)之固體熱傳導對熱傳效率之影響,此熱交換器由四組渦線所建構。數值分析模式中熱傳效率( )乃表示為熱傳單位指數(NTU)、熱容率比值(C)、無因次化管壁厚度( )、比爾數(Bi1 or Bi2)、渦線圈數(Nt)與無因次渦線起始角度( )之函數,經由與不具熱傳導效應之熱傳效率( )比較後,一個熱傳效率減少量之性能指標( )乃被定義且解答之。分析結果顯示, 與 值受 值之影響極為輕微,但兩者均會隨著Nt值之增加而增大;同時無論於平衡流(C = 1)或非平衡流(C ≠ 1) 之操作下,此熱交換器均存在一個最佳之Bi1值與一個最佳之Bi2值,兩者均介於10-4至10-2之間,操作於此最佳值之下,所得到之 值為最大值,而 值則會接近0。在熱力學第二定律之分析中,一個最佳之冷熱流之熱容率比值乃被發現,在廢熱之回收過程中,欲得到較大之有效功之回收率,此熱交換器之NTU值須大於2.0,且操作於接近平衡流之狀態。研究中亦針對此熱交換器於氣體-氣體、液體-液體與氣體-液體之應用分別進行最大可能 值之評估。在所規劃之實驗中,一個氣體-液體之渦捲式熱交換器乃被製作,並用於氣體側之熱傳與壓降資料之量測,在雷諾數(Re)於4447至32017之範圍內,量測之結果經參數相關性分析後,而提出一組平均紐塞數(Nu)與平均摩擦因子(f)之經驗公式。

The effect of radial and spiral-direction solid heat conduction on the heat transfer effectiveness of a counter-current spiral heat exchanger constructed by four Archimedes spirals was investigated. The heat transfer effectiveness ( ) is a function of number of transfer units (NTU1 and NTU2), ratio of flow capacity rates (C), dimensionless wall thickness ( ), Biot number (Bi1 or Bi2), number of spiral turns (Nt) and dimensionless start-point angle of spiral ( ). By comparing to the effectiveness of the heat exchanger without the solid heat conduction effect ( ), a performance evaluation factor called the decrement in heat transfer effectiveness ( ) was defined and numerically evaluated. The and the values are weakly dependent on the value, but moderately increase with the Nt value. Either at the balanced-flow operation or at the unbalanced-flow operation, the heat exchanger has an optimum Bi1 value and an optimum Bi2 value ranging from 10-4 to 10-2. At the optimum Bi1 or Bi2 values, the value is a maximum and the value nears zero. In the thermodynamic second-law analysis, an optimum hot flow-to-cold flow capacity-rate ratio was found. For obtaining a large net recovered exergy rate, the spiral heat exchanger needs to possess a large number of transfer units (greater than 2.0) and be operated at a near balanced-flow condition. For gas-to-gas, liquid-to-liquid and gas-to-liquid waste heat recovery applications, the maximum possible values of the spiral heat exchanger at balanced-flow operation were estimated. In the experiment, a gas-to-liquid spiral heat exchanger was manufactured and used for measuring the heat transfer and pressure drop data in the gas channel. Empirical equations for the Nusselt number (Nu) and Darcy friction factor (f) were established for the Reynolds number (Re) in the range of 4447 to 32017.


Acknowledgement i
Chinese abstract ii
Abstract iii
Table of Contents iv
List of Tables ix
List of Figures xi
Nomenclature xvi
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Literature survey 2
1.3 Objective of the work 12
Chapter 2 Geometric Analysis of Archimedes’ Spiral and Heat
Transfer Area in a Spiral Heat Exchanger 14
2.1 Length of a curve in polar coordinates 14
2.2 Length of Archimedes’ spiral in polar coordinates 16
2.3 Geometric analysis of a spiral heat exchanger 18
2.3.1 Length of inner surface of a wall (dashed line) 18
2.3.2 Length of outer surface of a wall (solid line) 19
2.3.3 Heat transfer area of a wall 22
2.3.4 Heat transfer area for a channel flow in the spiral heat exchanger 23
Chapter 3 Energy Equations for a Spiral Heat Exchanger
with Consideration of Solid-Side Heat Transfer 27
3.1 Mathematical modeling 27
3.1.1 Energy balance for inner wall of cold flow (dashed lines) 27
3.1.2 Energy balance for inner wall of hot flow (solid lines) 32
3.1.3 Energy balance for hot flow channel 37
3.1.4 Energy balance for cold flow channel 38
3.2 Dimensionless energy equations 39
3.2.1 Dimensionless energy equations for walls 41
3.2.2 Dimensionless energy equations for hot and cold flows 43
3.3 Heat transfer effectiveness of heat exchanger 45
3.4 Decrement in heat transfer effectiveness 46
3.5 Heat transfer effectiveness at Bi1 → 0 and Bi2 → 0 46
Chapter 4 Numerical Analysis 49
4.1 Finite-difference equations for the solid walls 49
4.1.1 Finite-difference equations for the inner wall
of the cold-flow channel 50
4.1.2 Finite-difference equations for the inner wall
of the hot-flow channel 65
4.2 Finite-difference equations for the channel flow 80
4.2.1 Finite-difference equations for the hot flow 80
4.2.2 Finite-difference equations for the cold flow 81
4.3 Computer simulation program 82
4.4 Error analysis of numerical scheme 83
Chapter 5 Heat Transfer and Exergy Analysis of a Spiral Heat Exchanger without Solid-Wall Heat Conduction Effect 85
5.1 Heat transfer area of a spiral heat exchanger without solid-wall heat conduction effect 85
5.2 Energy equations 87
5.2.1 Energy balance for hot flow 88
5.2.2 Energy balance for cold flow 89
5.3 Dimensionless energy equations 90
5.3.1 Dimensionless energy equations for the hot flow 90
5.3.2 Dimensionless energy equations for the cold flow ( ) 91
5.4 Numerical scheme and heat transfer effectiveness 92
5.5 Second-law analysis 94
5.5.1 Exergy change rate in a flow 94
5.5.2 Exergy change rate in a flow in the spiral heat exchanger 96
5.5.3 Net recovered exergy rate 97
5.5.4 Results of exergy analysis and discussion 99
5.5.5 Numerical example 101
Chapter 6 Results and Discussions for the Effect of Solid-Wall
Heat Conduction on the Heat Transfer Effectiveness 105
6.1 Heat transfer effectiveness of the spiral heat exchanger
at C* = 1.0 and NTU1 = NTU2 105
6.1.1 Temperature distributions 106
6.1.2 Heat transfer effectiveness of the spiral heat exchanger 107
6.1.2.1 Effect of Nt on 107
6.1.2.2 Effect of Bi1 on 107
6.1.2.3 Comparison between two different models 108
6.2 Decrement in heat transfer effectiveness ( ) at balanced-flow operation (C* = 1) 110
6.2.1 Effects of Bi1, , NTU1 values on value 110
6.2.1.1 value at small Bi1 values (Bi ≤ 10-4) 110
6.2.1.2 value at intermediate Bi1 values (10-4 < Bi1 < 0.1) 111
6.2.1.3 value at large Bi1 values (Bi1 ≥ 0.1) 112
6.2.2 Effect of Nt value on value 113
6.2.3 values at unequal NTU1 and NTU2 values 113
6.3 Decrement in heat transfer effectiveness ( ) at unbalanced-flow operation (C* ≠ 1) 114
6.4 Possible values at C* = 1 in practical applications 115
6.4.1 Gas-to-gas applications 116
6.4.2 Liquid-to-liquid applications 117
6.4.3 Gas-to-liquid applications 119
6.5 Regression analysis for at C* = 1 and large Bi
values (Bi1 = Bi2 = Bi) 121
Chapter 7 Measurement of Heat Transfer and Fluid Friction Data 124
7.1 Geometry of the spiral heat exchanger using in the experiment 124
7.2 Experiment on fluid friction correlation 125
7.2.1 Experimental setup and apparatus for pressure drop measurement 125
7.2.2 Pressure drop and Darcy friction factor 125
7.3 Experiment on heat transfer characteristics 127
7.3.1 Experimental setup and apparatus for temperature measurement 127
7.3.2 Data acquisition system in temperature measurement 128
7.3.2 Temperature distribution in the air-flow channel 130
7.3.3 Convective heat transfer coefficient and average Nusselt number 130
7.4 Uncertainty analysis of experimental data 133
7.4.1 Uncertainty analysis for the Nusselt number 133
7.4.2 Uncertainty analysis for the Darcy friction factor 135
7.5 Nu and f values in the literature 136
7.6 Comparison of the Nu and f values 138
7.7 Heat transfer effectiveness at various flowrates 139
Chapter 8 Conclusions 141
References 144



1.G.F. Hewitt, G.L Shires, Y.V Polezhaev, International Encyclopedia of Heat and Mass Transfer, CRC Press, New York, 1997, p. 1044.
2.B. Wilhelmsson, Consider spiral heat exchangers for fouling application, Hydrocarbon Process 84 (7) (2005) 81-83.
3.T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker, New York, 2000, p. 5
4.A.B. Jarzębski, Dimensioning of spiral heat exchangers to give minimum costs, ASME J. Heat Transfer 106 (3) (1984) 633-637.
5.D. Wu, Geometric calculations for the spiral heat exchanger, Chem. Eng. Technol. 26 (5) (2003) 592–598.
6.A.M. Angelo, Spiral plate heat exchangers: sizing units for cooling non-Newtonian slurries, Chem. Eng. (May 2010) 44-49.
7.M. Bidabadi, A.K. Sadaghiani, A.V. Azad, Spiral heat exchanger optimization using genetic algorithm, Sci. Iran., Transaction B: Mech. Eng. 20 (2013) 1445-1454.
8.M. Picón-Núñez, G.T. Polley, G. Martínez-Rodríguez, Graphical tool for the preliminary design of compact heat exchangers, App. Therm. Eng. 61 (1) (2013) 36-43.
9.M. Picón-Núñez, L. Canizalez-Dávalos, G. Martínez-Rodríguez, G.T. Polley, Shortcut design approach for spiral heat exchangers, Food Bioprod. Process 85 (4) (2007) 322-327.
10.M. Picón-Núñez, L. Canizalez-Dávalos, J.M. Medina-Flores, Alternative sizing methodology for compact heat exchangers of the spiral type, Heat Transfer Eng. 30 (9) (2009) 744–750.
11.P.E. Minton, Designing spiral-plate heat exchanger, Chem. Eng. (May 1970) 103-112.
12.K.M. Bailey, Understand spiral heat exchangers, Chem. Eng. Process 90 (5) (1994) 59–63.
13.T. Trom, Use spiral plate exchangers for various applications, Hydrocarbon Process 74 (5) (1995) 73-80.
14.M.R. Haque, Minimizing fouling in spiral heat exchangers at a BCTMP mill, Pulp & Paper Canada 108 (4) (2007) 35-44.
15.M.R. Strenger, S.W. Churchill, W.B. Retallik, Operational characteristics of a double-spiral heat exchanger for the catalytic incineration of contaminated air, Ind. Eng. Chem. Res. 29 (9) (1990) 1977–1984.
16.M.J. Targett, W.B. Retallick, S.W. Churchill, Solutions in closed form for a double-spiral heat exchanger, Ind. Eng. Chem. Res. 31 (3) (1992) 658-669.
17.K. Chowdhury, H. Linkmeyer, M.K. Bassiouny, H. Martin, Analytical studies on the temperature distribution in spiral plate heat exchangers: Straightforward design formulate for efficiency and mean temperature difference, Chem. Eng. Process. 19 (1985) 183-190.
18.H. Martin, K. Chowdhury, H. Linkmeyer, M.K. Bassiouny, Straightforward design formulate for efficiency and mean temperature difference in spiral plate heat exchangers, Proceedings of the Eighth International Heat Transfer Conference, San Francisco, Vol. 6 (1986) 2793-2797.
19.Martin, H., Heat Exchangers, Hemisphere, Washington DC, 1992, pp. 73–82.
20.J.C. Ho, N.E. Wijeysundera, S. Rajasekar, T.T. Chandratilleke, Performance of a compact, spiral-coil heat exchanger, Heat Recovery Systems & CHP 15 (5) (1995) 457–468.
21.N.E. Wijeysundera, J.C. Ho, S. Rajasekar, The effectiveness of a spiral coil heat exchanger, Int. Commun. Heat Mass Transfer 23 (5) (1996) 623-631.
22.P. Naphon, S. Wongwises, An experimental study on the in-tube convective heat transfer coefficient in a spiral coil heat exchanger, Int. Commun. Heat Mass Transfer 29 (6) (2002) 797-809.
23.M. Adamski, Heat transfer correlations and NTU number for the longitudinal flow spiral recuperators, Appl. Therm. Eng. 29 (2-3) (2009) 591–596.
24.T.J. Rennie, V.G.S. Raghavan, Numerical studies of a double-pipe helical heat exchanger, Appl. Therm. Eng. 26 (11-12) (2006) 1266-1273.
25.Bes, Th., Eine methode der thermischen berechnung von gegen-und gleichstrom-spiralwärmeaustauschern, Wärme-und Stoffübertragung 21 (5) (1987) 301-309.
26.Th. Bes, W. Roetzel, Distribution of heat flux density in spiral heat exchangers, Int. J. Heat Mass Transfer 35 (6) (1992) 1331–1347.
27.Th. Bes, W. Roetzel, Approximate theory of spiral heat exchanger, Design and Operation of Heat Exchangers: Proceedings of the EUROTHERM Seminars No. 18, Springer-Verlag, Berlin, 1991, pp. 223–232.
28.Th. Bes, W. Roetzel, Thermal theory of the spiral heat exchanger, Int. J. Heat Mass Transfer 36 (3) (1993) 765–773.
29.J.Y. San, G.S. Lin, K.L. Pai, Performance of a serpentine heat exchanger: Part I -Effectiveness and heat transfer characteristics, Appl. Therm. Eng. 29 (14-15) (2009) 3081-3087.
30.J.Y. San, C.H. Hsu, S.H. Chen, Heat transfer characteristics of a helical heat exchanger, Appl. Therm. Eng. 39 (14-15) (2012) 114-120.
31.L. M. Kovalenko, L. V. Oleinik, Investigation of heat transfer and hydraulic resistance of a spiral heat exchanger, Chem. Petrol. Eng. 10 (10) (1974) 893-894.
32.J. F. Devois , J. F. Durastanti, B. Martin, Numerical modelling of the spiral plate heat exchanger, J. Therm. Anal. 44 (2) (1995) 305-312.
33.L.C. Burmeister, Effectiveness of a spiral-plate heat exchanger with equal capacitance rates, ASME J. Heat Transfer 128 (3) (2006) 295-301.
34.Z.Y. Munir, Numerical investigation of thermal effectiveness of spiral-plate heat exchangers, Master thesis, University of Kansas, Lawrence, 2006.
35.M.W. Egner, L.C. Burmeister, Heat transfer for laminar flow in spiral ducts of rectangular cross section, ASME J. Heat Transfer 127 (3) (2005) 352-356.
36.M.W. Egner, L.C. Burmeister, Laminar flow and heat transfer in spiral ducts of rectangular cross section, ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Charlotte NC, Paper No. HT-FED2004-56053 (2004) 175-184.
37.R.Z. Wang, J.Y. Wu, Y.X. Xu, Y. Teng, W. Shi, Experiment on a continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers, Appl. Therm. Eng. 18 (1-2) (1998) 13-23.
38.R.Z. Wang, J.Y. Wu, Y.X. Xu, A continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers: Improvements. ASME. J. Sol. Energy Eng. 121 (1) (1999) 14-19.
39.S. Maruyama, T. Aoki, K. Igarashi, S. Sakai, Development of a high efficiency radiation converter using a spiral heat exchanger, Energy 30 (2-4) (2005) 359-371.
40.K. Yan, P.Q. Ge, Y.C. Su, H.T. Meng, Numerical simulation on heat transfer characteristic of conical spiral tube bundle, Appl. Therm. Eng. 31 (2-3) (2011) 284-292.
41.V. Vijayan and A. Gupta, Heat transfer comparison between Archimedean and rectangular spiral heat exchangers for mesoscale combustors, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Florida, Paper No. AIAA 2009-254 (2009).
42.F.A. McClintock, The design of heat exchangers for minimum irreversibility, Winter ann. Meeting of the ASME, Paper No. 51-A-108 (1951).
43.A. Bejan, Second-law analysis in heat transfer, Energy 5 (8-9) (1980) 720-732.
44.A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transfer 15 (1982) 1-58.
45.A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys. 79 (3) (1996) 1191–1218.
46.J.Y. San, W.M. Worek, Z. Lavan, Second-law analysis of a two- dimensional regenerator, Energy 12 (6) (1987) 485-496.
47.P. Naphon, Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger, Int. Commun. Heat Mass., 33 (2006) 1029–1041.
48.J.Y. San, C.L. Jan, Second-law analysis of a wet cross flow heat exchanger, Energy 25 (2000) 939-955.
49.S. Sarangi, K. Chowdhury, On the generation of entropy in a counter-flow heat exchanger, Cryogenics 22 (1982) 63–65.
50.A. Gupta, S.K. Das, Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid, Energy 32 (2007) 664–672.
51.J.Y. San, K.L. Pai, Performance of a serpentine heat exchanger: Part II-Second-law efficiency, Appl. Therm. Eng. 29 (2009) 3088-3093.
52.S.Y. Wu, X.F. Yuan, Y.R. Li, L. Xiao, Energy transfer effectiveness on heat exchanger for finite pressure drop, Energy 32 (2007) 2110-2120.
53.D.F. Ruan, X.F Yuan, S.Y. Wu, Y.R. Li, Exergy effectiveness analysis of three-fluid heat exchanger, J. Supercond. Nov. Magn. 23 (6) (2010) 1127-1131.
54.J.Y. San, Second-law performance of heat exchangers for waste heat recovery, Energy 35 (5) (2010) 1936-1945.
55.H. Hadi, P. Mohsen, D. Mahmoud, Control of free convection and entropy generation in inclined porous media, Heat Transfer Eng. 33 (6) (2012) 565-573.
56.A.S. Kalogirou, S. Karellas, V. Badescu, K. Braimakis, Exergy analysis on solar thermal systems: A better understanding of their sustainability, Renew. Energ. (2015) http://dx.doi.org/10.1016/j.renene.2015.05.037.
57.Ö. Kaşka, Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry, Energ. Convers. Manage. 77 (2014) 108-117.
58.G.B. Thomas, M.D. Weir, J. Hass, Thomas'' Calculus, 12th edition, Addison Wesley, Boston, 2009, p. 637.
59.J.D. Lawrence, A Catalog of Special Plane Curves, Dover Publications, New York, 1972, p. 186.
60.E.W. Weisstein, Archimedes'' Spiral, MathWorld - a Wolfram Web Resource, http://mathworld.wolfram.com/ArchimedesSpiral.html, 2014.
61.D.K. Nguyen, Heat Transfer Effectiveness and Exergy Recovery Effectiveness of a Spiral Heat Exchanger, (Master thesis) National Chung Hsing University, Taiwan, ROC, 2011.
62.A.F. Mills, Heat Transfer, Richard D. Irwin, Inc., 1992.
63.F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Foundations of Heat Transfer, sixth ed., John Wiley & Sons, Singapore, 2013.
64.M.N. Ozisik, Heat Conduction, John Wiley, 1980.
65.R.E. Sonntag, C. Borgnakke, G.J.V Wylen, Fundamentals of Thermodynamics, 6th edition, John Wiley and Sons, 2003.
66.F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Introduction to Heat Transfer, fifth ed., John Wiley & Sons, Singapore, 2007.
67.S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-8.
68.M.N. özisik, R.M. Cotta, W.S. Kim, Heat transfer in turbulent forced convection between parallel-plates, Can. J. Chem. Eng. 67 (5) (1989) 771-776.
69.M.S. Bhatti and R.K. Shah, Turbulent and transition flow convective heat transfer in ducts, Chapter 4 in Handbook of Single-phase Convective Heat Transfer, edited by S. Kakaç, R.K. Shah and W. Aung, John Wiley, Network, 1987.
70.G.K. Filonenko, Hydraulic resistance in pipes, Teploenergetica 1 (4) (1954) 40-44.
71.V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16 (2) (1976) 359-368.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top