跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜錚
研究生(外文):Yi-Cheng Lee
論文名稱:直調弱共振腔法布里-珀羅雷射二極體建構10 GHz自回授鎖模光纖雷射之特性研究
論文名稱(外文):Investigation on 10 GHz Self-Feedback Mode-Locking Dynamics of a Directly-Modulated WRC-FPLD Fiber Laser
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
口試委員:黃升龍呂海涵
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:92
中文關鍵詞:法布里-珀羅雷射二極體自回授直接調變鎖模自增益切換
外文關鍵詞:weak-resonant-cavity Fabry-Perot laser diodeself-feedbackdirectly-modulatedmode-lockinggain-switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們利用自回授鎖模弱共振腔法布里-珀羅雷射建立一種新型光纖環形雷射,藉由直接調變弱共振腔法布里-珀羅雷射產生脈衝訊號的輸出,使得弱共振腔法布里-珀羅雷射在光纖環腔中同時被當作增益介質與脈衝光源來達到鎖模脈衝雷射。利用此架構建立一種在超過弱共振腔法布里-珀羅雷射原來頻寬的操作下,我們成功達到10 GHz鎖模脈衝雷射輸出。
首先,90%的回授功率以及28 dBm的調變強度經過自回授光纖環腔後可觀察到鎖模力量的增強,並建立在修正後中鎖模理論中進行探討。此外,經過系統優化後,我們討論了光脈衝輸出從自增益切換轉換至鎖模雷射的特性,使得弱共振腔法布里-珀羅雷射的縱模退化了30 dB,造成縱模的拓寬。而在自回授弱共振腔法布里-珀羅雷射鎖模光纖環形雷射脈衝輸出中,經優化後將弱共振腔法布里-珀羅雷射操作在60 mA與90%的自回授功率,可獲得最佳的脈衝寬、時基誤差、脈衝消光比與光譜線寬分別可達到22 ps、153 fs、13.65 dB以及7.6 nm脈衝輸出。
接著,我們同樣藉由光注入的理論模型模擬出光脈衝輸出從自增益切換轉換至鎖模雷射的情形,並改變不同的回授功率以及弱共振腔法布里-珀羅雷射的端面反射率探討脈衝之變化情形。透過脈衝形狀、縱模線寬以及啁啾頻率的改變,我們探討了在弱共振腔法布里-珀羅雷射的腔體與外環腔的競爭下所造成的鎖模力量變化。由於為了符合高密度分波多工器在傳輸上的應用,我們建立了雙環腔系統並且期望可同時達到品質好的脈衝訊號與選模的目的。然而,在原來90%自回授鎖模光纖雷射中,額外架設之外環腔會造成系統的調變頻寬下降,因而使得鎖模力量減弱,故我們藉由改變環腔功率的比例從10%增加到90%來觀察在共振條件改變時,探討光脈衝輸出品質的變化。所以,將雙環腔建構在自回授鎖模弱共振腔法布里-珀羅雷射系統中,脈衝弱化的情形使得無法針對高密度分波多工通道化的傳輸做探討。受到額外共振腔條件的影響,鎖模力量的弱化使得脈衝寬在雙環腔功率為10%與90%時,可分別得到脈衝寬為24 ps以及30 ps的脈衝輸出。
最後,我們探討90%強自回授鎖模弱共振腔法布里-珀羅雷射系統在外環腔以及直調雷射內腔競爭之行為。當我們些微改變雷射的調變頻率時,可觀察出光脈衝輸出頻率會從諧波鎖模轉變成一種高重複率的脈衝光源輸出。藉由改變系統的操作參數來觀察在環腔競爭後所產生的此一高重複率脈衝力量的來源,我們提出了一種新的自增益切換鎖模雷射技術。在將操作電流與頻率做微調整使得自增益切換鎖模力量增強的情況下,我們可以得到重複率高達67 GHz的脈衝光源輸出。

In this work, a novel designed fiber ring laser by self-feedback mode-locked weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) is established. By directly-modulating, the WRC-FPLD is used simultaneously as the gain medium and the optical pulsed carrier source in the fiber ring. The characteristic of the 10 GHz mode-locked optical pulse-train beyond modulation bandwidth operation of the WRC-FPLD has been demonstrated.
First, with 90% self-feedback ratio and 28 dBm modulation power via circulated fiber ring, the enhancement of mode-locked force can be obtained, and the modification on the self-injection structure is discussed with the mode-locking theory. Besides, when optimizing the operation, the broadening longitudinal mode of the WRC-FPLD caused by the transformation from the gain-switching to mode-locking is demonstrated because of the degradation of the longitudinal mode suppression in 30 dB. The optimized mode-locking output of the self-feedback WRC-FPLD fiber ring with pulsewidth, timing jitter, pulse extinction ratio, and spectral linewidth of 22 ps, 153 fs, 13.65 dB, and 7.6 nm are obtained by setting the WRC-FPLD bias and self-feedback ratio at 60 mA and 90%, respectively.
Then, we also discuss the performance of output pulse on the transformation from gain-switching to mode-locking by changing the feedback ratio and reflectivity of the WRC-FPLD with the theoretic model of optical injection locking. By studying the conversion of pulse sharp, longitudinal mode linewidth, and frequency chirping, some trends of the competition between the intra-cavity of WRC-FPLD and external fiber ring can be explained by the enhancement of mode-locked force. In order to retain the better performance of optical pulsation and selective longitudinal mode frequency for DWDM channel spacing at the same time, the dual cavity built of an extra fiber ring is demonstrated. Under the 90% self-feedback mode-locked fiber ring laser, additional oscillation condition causes the variation on the modulation response of the system is proposed, which induces the change on the mode-locked force. When the different forces of oscillation are described by changing dual fiber ring ratio from 10% to 90%, the performance of optical pulsation can be observed. The self-feedback mode-locked WRC-FPLD in dual cavity which cannot implement the channelized transmission because of the degradation on the performance of optical pulse-train is also investigated. Moreover, the extra oscillation condition which causes the degeneracy on mode-locked force regardless of the dual cavity ratio of 10% or 90% would obtain the pulsewidth of 24 ps and 30 ps, respectively.
Finally, 90% self-feedback mode-locked WRC-FPLD with an external fiber ring has a competition with the intra-cavity of directly-modulated laser diode. Optical pulsation transferring from harmonic mode-locking to high-speed repetition rate is observed by detuning RF frequency under direct modulation. By means of changing the parameters of operation, the transformation from the competition can be demonstrated on another force, which means the domination of gain-switched mode-locking. The result of repetition rate enhancement up to 67 GHz is investigated and obtained by the adjustment on the biased current and frequency.

口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Harmonic Mode-Locked Fiber Ring Laser 1
1.2 Transformation from Gain-Switching to Mode-Locking 3
1.3 Motivation 4
1.4 Organization of the Thesis 5
1.5 References 6
Chapter 2 10 GHz Directly-Modulated of Self-Feedback Harmonic Mode-Locking Weak-Resonant-Cavity Fabry-Perot Laser Diode Fiber Ring 11
2.1 Introduction 11
2.2 Model of Active Mode-Locked Analysis of Self-Feedback Mode-Locked WRC-FPLD 13
2.3 Experimental Setup 18
2.3.1 Self-Feedback Mode-Locked WRC-FPLD Fiber Ring 18
2.4 Results and Discussions 19
2.4.1 Optimization of Optical Pulsation with Biased Current and Feedback Ratio 19
2.4.2 Competition of the Longitudinal MER between CW and HML Operation 22
2.4.3 Theoretic Model of the Optical Spectrum of Longitudinal-Mode Linewidth 23
2.5 Summary 26
2.6 References 28
Chapter 3 Self-Feedback Harmonic Mode-Locking at 10 GHz Directly-Modulated of Weak-Resonant-Cavity Fabry-Perot Laser Diode with Single and Dual Fiber Ring Cavity 38
3.1 Introduction 38
3.2 Theoretic Model of 10 GHz Directly-Modulated WRC-FPLD of Self-Feedback Mode-Locked Fiber Ring 41
3.2.1 Basic Characterizations on the Differential Equations and Some Parameters of the WRC-FPLD 41
3.2.2 Pulse Sharp 43
3.2.3 Longitudinal Mode Linewidth 45
3.2.4 Frequency Chirping 46
3.3 Experimental setup 47
3.3.1 Dual Cavity of Self-Feedback Mode-Locked WRC-FPLD 47
3.4 Results and Discussions 48
3.4.1 Frequency Chirping Analysis of Self-Feedback Mode-Locked WRC-FPLD Fiber Ring 48
3.4.2 Performances of Modulation Response 49
3.4.3 Effects of Self-Feedback Mode-Locked with Dual Fiber Ring 50
3.5 Summary 54
3.6 References 56
Chapter 4 Competition between Gain-Switched Mode-Locking and Harmonic Mode-Locking under Directly-Modulated Weak-Resonant-Cavity Fabry-Perot Laser Diode with Self-Feedback Structure 68
4.1 Introduction 68
4.2 Experimental Setup 70
4.2.1 High-Repeat-Rate Mode-Locking the WRC-FPLD 70
4.3 Transformation from HML to High-Repeat-Rate Mode-Locking of the WRC-FPLD 70
4.4 Results and Discussions 72
4.4.1 Investigation of High-Repeat-Rate Pulse Generation 72
4.4.1.1 Large Signal Directly-Modulated 72
4.4.1.2 Sub-Harmonic Mode-Locking (Sub-HML) 73
4.4.1.3 Rational Harmonic Mode-Locking (RHML) 73
4.4.1.4 Gain-Switched Mode-Locking (GML) 75
4.5 Summary 78
4.6 References 79
Chapter 5 Conclusions 88
作者簡介 91
PUBLICATION LIST 92

[1.1]G H C New, “The generation of ultrashort laser pulses”, Rep. Prog. Phys., vol. 46, no. 8, pp. 877-971, Aug. 1983.
[1.2]M. Didomenico, J. E. Geusic, H. M. Marcos, and R. G. Smith, “Generation of ultrashort optical pulses by mode locking the YAIG: ND laser”, Appl. Phys. Lett., vol. 8, no. 7 pp. 180-183, Apr. 1996.
[1.3]J. Hirano and T. Kimura, “Multiple mode locking of lasers”, IEEE J. Quantum Electron., vol. QE-5, no. 5, pp. 219-225, May 1969.
[1.4]Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber”, IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2066-2068, Dec. 2008.
[1.5]A. Takada and H. Miyazawa, “30 GHz picosecond pulse generation from actively mode-locked erbium-doped fibre laser”, Electron. Lett., vol. 26, no. 3, pp. 216-217, Feb. 1990.
[1.6]A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6ps pulse generation at 40GHz in phaselocked ring laser incorporating highly nonlinear fibre for application to 160Gbit/s OTDM networks”, Electron. Lett., vol. 35, no. 8, pp. 645-646, Apr. 1999.
[1.7]G. Geister and R. Ulrich, “Neodymium-fibre laser with integrated-optic mode locker”, Opt. Commun., vol. 68, no. 3, pp. 187-189, Oct. 1988.
[1.8]I. N. Duling, L. Goldberg, and J. F. Weller, “High-power, mode-locked Nd:fibre laser pumped by an injection-locked diode array”, Electron. Lett., vol. 24, no. 21, pp. 1333-1335, Oct. 1998.
[1.9]E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a mach-zehnder modulator output”, IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 114-116, Jan. 1995.
[1.10]D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, and M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth”, J. Lightw. Technol., vol. 14, no. 9, pp. 2035-2043, Sep. 1996.
[1.11]M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier”, Electron. Lett., vol. 36, no. 18, pp. 1580-1581, Aug. 2000.
[1.12]E. J. Greer and K. Smith, “12. All-optical FM mode-locking of fibre laser”, Electron. Lett., vol. 28, no. 18, pp. 1741-1743, Aug. 1992.
[1.13]J. He and K. T. Chan, “All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA”, Electron. Lett., vol. 38, no. 24, pp. 1504-1505, Nov. 2002.
[1.14]D. C. Hanna, A. Kazer, M. W. Phillips, D. P. Shepherd, and P. J Suni, “Active mode-locking of an Yb: Er fibre laser”, Electron. Lett., vol. 25, no. 2, pp. 95-96, Jan. 1989.
[1.15]B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation-maintaining erbium fibre ring laser”, Electron. Lett., vol. 36, no. 5, pp. 411-413, Mar. 2000.
[1.16]J. E. Bowers, P. A. Morton, A. MAR, and S. W. Corzine, “Actively mode-locked semiconductor lasers”, IEEE J. Quantum Electron., vol. 25, no. 6, pp. 1426-1439, Jun. 1989.
[1.17]M. J. Guy, J. R. Taylor, and K. Wakita, “10 GHz 1.9 ps actively modelocked fibre integrated ring laser at 1.3 μm”, Electron. Lett., vol. 33, no. 19, pp. 1630-1632, Sep. 1997.
[1.18]G.-R. Lin, I. H. Chiu, and M. C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression”, Opt. Express, vol. 13, no. 3, pp. 1008-1014, Feb. 2005.
[1.19]G.-R. Lin and I. H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser”, IEEE Photon. Technol. Lett., vol. 18, no. 9, pp. 1010-1012, May 2006.
[1.20]G.-R. Lin, Y. C. Lin, K. C. Lin, and G. H. Peng, “Electron-hole plasma-induced spectral blueshift of optical-data injection mode-locked semiconductor optical amplifier fiber laser”, J. Lightw. Technol., vol. 28, no. 3, pp. 246-253, Feb. 2010.
[1.21]G.-R. Lin, Y. C. Lin, K. C. Lin, W. Y. Lee, and C. L. Wu, “50 fs soliton compression of optical clock pulse recovered from NRZ data injected SOAFL”, Opt. Express, vol. 18, no. 9, pp. 9525-9530, Apr. 2010.
[1.22]C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser”, IEEE J. Quantum Electron., vol. 36, no. 2, pp. 145-150, Feb. 2000.
[1.23]K. K. Gupta, N. Onodera, K. S. Abedin, and M. Hyodo, “Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers”, IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 284-286, Mar. 2002.
[1.24]T. Pfeiffer and G. Veith, “40 GHz pulse generation using a widely tunable all polarization preserving erbium fiber ring laser”, Electron. Lett., vol. 29, no. 21, pp. 1849-1850, Oct. 1993.
[1.25]K. K. Gupta and D. Novak, “Millimeter-wave repetition-rate optical pulse train generation in harmonically modelocked fiber ring laser”, Electron. Lett., vol. 33, no. 15, pp. 1330-1331, Jul. 1997.
[1.26]Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively modelocked fibre ring lasers”, Electron. Lett., vol. 32, no. 5, pp. 455-457, Feb. 1996.
[1.27]L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream”, IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1348-1350, Oct. 2003.
[1.28]E. Yoshida and M. Nakazawa, “80-200 GHz erbium doped fiber laser using a rational harmonic mode-locking technique”, Electron. Lett., vol. 32, no. 15, pp. 1370-1372, Jul. 1996.
[1.29]G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection”, Opt. Express, vol. 18, no. 9, pp. 9570-9579, Apr. 2010.
[1.30]H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser”, IEEE J. Quantum Electron., vol. QE-17, no. 5, pp. 663-670, May 1981.
[2.1]S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing”, IEEE J. Quantum Electron., vol. 34, no. 11, pp. 2064-2079, Nov. 1998.
[2.2]J. M. Roth, T. G. Ulmer, N. W. Spellmeyer, S. Constantine, and M. E. Grein, “Wavelength-tunable 40-GHz picosecond harmonically mode-locked fiber laser source”, IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2009-2011, Sep. 2004.
[2.3]P. P Vasil’ev, I. H White, and J. Gowar, “Fast phenomena in semiconductor lasers”, Rep. Prog. Phys., vol. 63, no. 12, pp. 1997-2042, Oct. 2000.
[2.4]P.‐T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, “Picosecond pulse generation with a cw GaAlAs laser diode”, Appl. Phys. Lett., vol. 33, no. 3, pp. 241-242, Aug. 1978.
[2.5]J. W. Gates and R. G. N. Hall, “Optical amplification of apparent rate of rotation of a reflector in Q-switching a laser resonator”, Nature, vol. 206, no. 4989, pp. 1141-&, Jun. 1965.
[2.6]M. F. Becker, D. J. Kuizenga, and A. E. Siegman, “Harmonic mode locking of the Nd:YAG laser”, IEEE J. Quantum Electron., vol. QE-8, no. 8, pp. 687-693, Aug. 1972.
[2.7]E. P. Ippen, “Principles of passive mode locking”, Appi. Phys. B, vol. 58, no. 3, pp. 159-170, Mar. 1994.
[2.8]J. B. Schlager, B. E. Callicoatt, R. P. Mirin, and N. A. Sanford, “Passively mode-locked waveguide laser with low residual jitter”, IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1351-1353, Sep. 2002.
[2.9]B. Bakhshi, P. A. Andrekson, and X. P. Zhang, “A polarization-maintaining and dispersion-managed 10-GHz mode-locked Erbium fiber ring laser providing both sech2- and Gaussian-shaped pulses”, Opt. Fiber Technol., vol. 4, no. 3, pp. 293-303, Jul. 1998.
[2.10]E. D. Park, T. J. Croeze, P. J. Delfyett, Jr., A. Braun, and J. Abeles, “Multiwavelength mode-locked InGaAsP laser operating at 12 ch x 2 GHz and 16 ch x 10 GHz”, IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 837-839, Jun. 2002.
[2.11]K. Sato, H. Ishii, I. Kotaka, Y. Kondo, and M.Yamamoto, “Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratings”, IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 2, pp. 250-255, Apr. 1997.
[2.12]G.-R. Lin, Y. C. Chang, and J. R. Wu, “Rational harmonic mode-locking of erbium-doped fiber laser at 40 GHz using a loss-modulated Fabry-Perot laser diode”, IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1810-1812, Aug. 2004.
[2.13]S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning”, Opt. Express, vol. 14, no. 20, pp. 9299-9306, Oct. 2006.
[2.14]M. G. Vasil’ev, A. M. Vasil’ev, and A. A. Shelyakin, “High-power InP/GaInAsP buried heterostructure semiconductor laser with a modulation band of up to 10 GHz”, Inorg. Mater., vol. 46, no. 9, pp. 1013-1018, Sep. 2010.
[2.15]R. Alizon, A. Bilenca, H. Dery, V. Mikhelashvili, and G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Cross-gain modulation in inhomogeneously broadened gain spectra of InP-Based 1550 nm quantum dash optical amplifiers: Small-signal bandwidth dependence on wavelength detuning”, Appl. Phys. Lett., vol. 82, no. 26, pp. 4660-4662, Jun. 2003.
[2.16]D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications”, J. Lightwave Technol., vol. 22, no. 1, pp. 63-70, Jan. 2004.
[2.17]X. Jin and S. L. Chuang, “Microwave modulation of a quantum-well laser with and without external optical injection”, IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 648-650, Jul. 2001.
[2.18]X. H. Fang, P. K. A. Wai, C. Lu, H. Y. Tam, and X. H. Dong, “High-repetition-rate pulse generation using dual-mode self-injection locking in a Fabry-Perot laser diode”, Opt. Eng., vol. 49, no. 7, pp. 074201-074205, Jul. 2010.
[2.19]O. Lidoyne, P. B. Gallion, and D. Erasme, “Modulation properties of an injection-locked semiconductor laser”, IEEE J. Quantum Electron., vol. 27, no. 3, pp. 344-351, Mar. 1991.
[2.20]Y. H. Lin, G. C. Lin, H. L. Wang, Y. C. Chi, and G.-R. Lin, “Compromised extinction and signal-to-noise ratios of weak-resonant-cavity laser diode transmitter injected by channelized and amplitude squeezed spontaneous-emission”, Opt. Express, vol. 18, no. 5, pp. 4457-4468, Mar. 2010.
[2.21]H. A. Haus, “Mode-Locking of Lasers”, IEEE J. Select. Topics Quantum Electron., vol. 6, no. 6, pp. 1173-1185, Nov./Dec. 2000.
[2.22]E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial”, IEEE J. Select. Topics Quantum Electron., vol. 15, no. 3, pp. 618-633, May/Jun. 2009.
[2.23]C. H. Henry, “Theory of the linewidth of semiconductor lasers”, IEEE J. Quantum Electron., vol. QE-18, no. 2, pp. 259-264, Feb. 1982.
[2.24]D. W. Rush, G. L. Burdge, and P.-T. HO, “The linewidth of a mode-locked semiconductor laser caused by spontaneous emission: experimental comparison to single-mode operation”, IEEE J. Quantum Electron., vol. QE-22, no. 11, pp. 2088-2091, Nov. 1986.
[2.25]K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diodes”, J. Lightwave Technol., vol. LT-3, no. 5, pp. 1048-1055, Oct. 1985.
[2.26]L. Mandeli and E. Wolfs, “The measures of bandwidth and coherence time in optics”, Proc . Phys. Soc., vol. 80, no. 4, pp. 894-897, Oct. 1962.
[2.27]Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus “Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes,” Proc. of SPIE, vol. 5595, pp. 213-227, Nov. 2004.
[3.1]E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial”, IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 618-633, May/Jun. 2009.
[3.2]Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding”, IEEE Photon. Technol. Lett., vol. 9, no. 8, pp. 1087-1089, Aug. 1997.
[3.3]R. H. Pantell, “The laser oscillator with an external signal”, Proc. IEEE, vol. 53, no. 5, pp. 474-477, May 1965.
[3.4]W. H. Steier and H. L. Stover, “Locking of laser oscillators by light injection”, IEEE J. Quantum Electron., vol. QE-2, no. 4, pp. 111-112, Apr. 1966.
[3.5]C. J. Buczek, R. J. Freiberg, and M. L. Skolnick, “Laser injection locking”, Proc. IEEE, vol. 61, no. 10, pp. 1411-1431, Oct. 1973.
[3.6]C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers”, IEEE J. Quantum Electron., vol. QE-21, no. 8, pp. 1152-1156, Aug. 1985.
[3.7]J. Troger, L. Thevenaz, and P. Robert, “Frequency-sweep generation by resonant self-injection locking”, Opt. Lett., vol. 24, no. 21, pp. 1493-1495, Nov. 1999.
[3.8]R. L. Facklam, “Self-injection locking technique”, Proc. SPIE, vol. 1626, pp. 360-367, Apr. 1992.
[3.9]D. Lenstra, B. H. Verbeek, and A. J. den Boef, Coherence collapse in single-mode semiconductor lasers due to optical feedback, IEEE J. Quantum Electron., vol. QE-21, no. 6, pp. 674-679, Jun. 1985.
[3.10]R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron., vol. QE-16, no. 3, pp. 347-355, Mar. 1980.
[3.11]E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking”, Appl. Phys. Lett., vol. 82, no. 5, pp. 258-260, Mar. 1976.
[3.12]W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifiers”, IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1418-1420, Oct. 2007.
[3.13]K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10 × 30 GHz pulse train generation from semiconductor amplifier fiber ring laser”, IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 25-27, Jan. 2000.
[3.14]K. S. Abedin, N. Onodera, and M. Hyodo, “Repetition-rate multiplication in actively mode-locked fiber lasers by higher-order FM mode locking using a high-finesse Fabry-Perot filter”, Appl. Phys. Lett., vol. 73, no. 10, pp. 1311-1313, Sep. 1998.
[3.15]G. H. Peng, J. J. Kang, Y. C. Lin, Y. C. Chi, C. K. Lee, and G.-R. Lin, “Chirp-compensated multichannel hybrid dwdm/tdm pulsed carrier from optically injection-mode-locked weak-resonant-cavity laser diode fiber ring”, IEEE J. Quantum Electron., vol. 47, no. 2, pp. 182-189, Feb. 2011.
[3.16]H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection”, IEEE J. Quantum Electron., vol. 32, no. 2, pp. 227-235, Feb. 1996.
[3.17]R. J. Helkey, and Y. Arakawa, “Cavity optimization for minimum pulsewidth of gain-switched semiconductor lasers”, IEEE Photon. Technol. Lett., vol. 7, no. 3, pp. 272-274, Mar. 1995.
[4.1]S. Arahira and Y. Ogawa, “480-GHz subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode”, IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 537-539, Apr. 2002.
[4.2]H. Kurita, T. Shimizu, and H. Yokoyama, “Experimental investigations of harmonic synchronization conditions and mechanisms of mode-locked laser diodes induced by optical-pulse injection”, IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 3, pp. 508-513, Sep. 1996.
[4.3]X. Wang, H. Yokoyama, and T. Shimizu, “Harmonic multiplication of mode-locking frequency by optical pulse train injection into a monolithic mode-locked diode laser”, in CLEO/Pacific Rim''95 Proc., pp. 235-236, Jul. 1995, paper FV2.
[4.4]Z. Jia, H. S. Jin, and S. D. Sun, “High-speed pulse train generation by spectral filtering of a mode-locked laser output”, Ukr. J. Phys. Opt., vol. 11, no. 1, pp. 61-67, Jan. 2010.
[4.5]S. Yang and X. Bao, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror”, IEEE J. Quantum Electron., vol. 41, no. 10, pp. 1285-1292, Oct. 2005.
[4.6]Y. J. Wen, H. F. Liu, and D. Novak, “Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection”, IEEE J. Quantum Electron., vol. 37, no. 9, pp. 1183-1193, Sep. 2001.
[4.7]Y. J. Wen, D. Novak, H. F. Liu, and A. Nirmalathas, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous modelocking of Fabry-Perot semiconductor laser”, Electron. Lett., vol. 37, no. 9, pp. 581-582, Apr. 2001.
[4.8]S. Arahira and Y. Ogawa, “Synchronous mode-loclung in passively mode-locked semiconductor laser diodes using optical short pulses repeated at subharmonics of the cavity round-trip frequency”, IEEE Photon. Technol. Lett., vol. 8, no. 2, pp. 191-193, Feb. 1996.
[4.9]N. J. Traynor, H. F. Liu, and D. Novak, “Modelocking of Fabry-Perot semiconductor laser by subharmonic optical injection”, Electron. Lett., vol. 35, no. 7, pp. 566-567, Apr. 1999.
[4.10]N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode‐locked semiconductor lasers”, Appl. Phys. Lett., vol. 62, no. 12, pp. 1329-1331, Mar. 1993.
[4.11]Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively modelocked fibre ring lasers”, Electron. Lett., vol. 32, no. 5, pp. 455-457, Feb. 1996.
[4.12]S. Ozharar, S. Gee, F. Quinlan, S. Lee, and P. J. Delfyett, “Pulse-amplitude equalization by negative impulse modulation for rational harmonic mode locking”, Opt. Lett., vol. 31, no. 19, pp. 2924-2926, Oct. 2006.
[4.13]C. HoEnninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, J. Opt. Soc. Am. B, vol. 16, no. 1, pp. 46-56, Jan. 1999.
[4.14]F. X. Kartner, L. R. Brovelli, D. Kopf, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices”, Opt. Eng., vol. 34, no. 7, pp. 2024-2036, Jul. 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top